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Slow viscous flows in micropolar fluids
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A systematic calculation of micropolar fluid flows around a sphere and a cylinder is presented. The explicit
velocity fields and the drag forces exerted by the fluid flow in both two and three dimensions are obtained. The
solution of a steady micropolar fluid flow inside the cylinder is also obtained and is identical to the form
observed in an experiment on granular vibrating beds.

PACS numbgs): 45.70.Mg, 47.15.Gf, 83.50.Jf

[. INTRODUCTION If we admit the relevancy of micropolar fluid mechanics,
it is obvious that the flow around a cylinder or a sphere and
Micropolar fluids are fluids with microstructures. They its drag force play fundamental roles. Thus, we will calculate
belong to a class of fluids with a nonsymmetric stress tensothe fluid flows under such circumstances. We will also dis-
Micropolar fluids consist of rigid, randomly oriente@r cuss a steady flow inside a container. The result inside a
spherical particles with their own spins and microrotations, cylinder is identical to that observed in an experiment on
suspended in a viscous medium. The concept of microrotavibrating beds[17]. We will comment on the steady flow
tion was proposed by Cosserat and Cosserat in the theory ofside a rectangular container, which also gives identical re-
elasticity[1]. Condiff and Dahlef2] and Eringeri3] applied  sults to those in experiments and simulatiphg,18.
the concept to describe fluids with microstructures in the There are some relevant previous investigations on creep
middle of the 1960s. Recently, a comprehensive textbook oflows in micropolar fluid mechanic§4]. In particular,
micropolar fluids has been publishgd]. Ramkissoor{19] has obtained the solution of a micropolar
Physical examples of micropolar fluids can be seen irfluid flow around a sphere and the drag force exerted on the
ferrofluids [5], blood flows[6,7], bubbly liquids[8], liquid  sphere. Later, Power and Ramkissq@0] presented a fun-
crystals[9], and so on, all of them containing intrinsic po- damental solution, i.e., the Green function, etc., the Stoke-
larities. Thus, micropolar fluid mechanics is not a uselessian micropolar flow. It seems, however, that Ramkissoon’s
generalization of the Navier-Stokes model, but is a physicalculation19] contains minor mistakes. Thus, we may need
cally relevant model that has many applications. a revised calculation. Although Buchukuri and Chichinadze
The most interesting application of micropolar fluid me-[21] obtained the fundamental solution and predicted the
chanics is to describe granular flopi—14. In fact, granu-  fluid flow around a cylinder as an integral form, they could
lar flow is one of the flows that have microstructure andnot present the explicit velocity field and the drag force.
rotation of particles. Thus, Kanatafil5] has formulated a Here, we will give explicit expressions based on the algo-
micropolar fluid model for granular flows. Karet al. [16]  rithm by Kaplun and Lagerstrofi22—26.
have confirmed the quantitative validity of the micropolar The organization of this paper is as follows. In the next
fluid model in a chute flow of granular particles by compari- section, we will briefly review studies of granular hydrody-
son of their simulation of micropolar fluids with their experi- namics. This section consists of three parts. The first part is
ments. It is worthwhile to indicate that the velocity profile of devoted to introduction of the difficulties of the conventional
the chute flow(vertical component to the slop@btained Chapman-Enskog approach to deriving hydrodynamic equa-
from the micropolar fluid modef16] is far from the para- tions from kinetic theory. In the second part we will explain
bolic curve expected from the conventional Navier-Stokeghe outline of Kanatani’'s formulation of granular hydrody-
flow, but is similar to a linear function when the slope is notnamics based on micropolar fluid mecharit§]. In the last
large. For larger slopes, the profile becomes con¢eesthe  part of this section, we will discuss whether Newtonian mi-
power index is smaller than) ith surface slips. Although cropolar fluid mechanics can be used in granular flows. In
we do not know whether the micropolar fluid model is ap-Sec. Ill, we will explain the general framework for a steady
plicable in other situations of granular flow, it is worthwhile viscous flow around a sphere or a cylinder. In Sec. IV, we
to investigate fundamental properties of micropolar fluidswill show the correct calculation of the Stokes flow around a
from the viewpoint of granular physics. sphere and the drag force. We correct the result obtained by
In this paper, we focus on slow viscous flows of micropo-Ramkissoorj19]. In Sec. V, we will obtain an explicit solu-
lar fluids. The main purpose of this study is to clarify the tion of the micropolar fluid model around a cylinder by the
mathematical structure of the creep flow in a Newtonian mi-method of Kaplun and Lagerstrof@#2—26. We calculate the
cropolar fluid model. This motivation is independent of ourdrag force exerted on the cylinder. In Sec. VI, we will cal-
interest in granular flows. The main reason why we adopt theulate the axial symmetric flow inside a cylinder and a rect-
Newtonian model is its simplicity and its generality. We alsoangular container. We demonstrate that flows observed in
look for the possibility of applying the Newtonian micropo- experiments and simulations are similar to the solutions of
lar fluid model to granular flows as a phenomenological dethe micropolar fluid model. In Sec. VII, we discuss the rel-
scription. evancy of our calculation in granular physics and how to
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improve it. We summarize general features of micropolamgravity form stringlike clusters in which the density is very

fluid mechanics, and conclude our results. high. Thus, it has become the consensus that hydrodynamics
cannot be used, at least in one-dimensional sys{88s41].
Il. REVIEW OF GRANULAR HYDRODYNAMICS Similarly, Breyet al. [42] have shown that the velocity dis-

_ . . . tribution function obeys a power law, and hydrodynamic
In this section, we present a brief review of granular hy-equations break down when the restitution constant exceeds
drodynamics. This review may clarify our motivation to ap- g critical value.
ply micropolar fluid mechanics to granular flows. If readers — on the other hand, there are some applications of granular
are not interested in its application to granular flows but argyydrodynamics as phenomenology. Bourzutschky and Miller
interested in micropolar fluid mechanics itself, they can ig-[43] applied hydrodynamics with the slip boundary condition

nore this section. to granular convection in vibrating beds. Hayakaataal.
[44] also proposed a hydrodynamic model of granular con-
A. Conventional approaches and their difficulties vection and discussed the mechanism of appearance of con-

It is natural hvdrodvnami roach har vection rolls. Hayakawa and Holr[g5] compar_ed the previ-
tis natural to adopt hydrodynamic approaches to charac us model[44] with a model with a relaxation term as a

terize granular flows because flows should be described bygi

; : ; ; o dy force, similar to a model of traffic flowghe traffic
kind of fluid mechanics based on Euler’s description. How- 0 ) ;
ever, it is obvious that any continuous description has Iimi-mOdeD' They found that the traffic model is better than the

tations, because granular materials consist of visible grain£r6\’.Ious one in capturing th_e chargcterlstlcs of gran_ular con-
Eventually, any fluid model cannot be a microscopic modelective flow. Details of the discussion about the traffic model

but a phenomenology. However, if we look for models that®a" be seen in Re(.4§]. However', the traffic model is a
have a microscopic basis, we have to begin with molecula urious model which violates physical common sense. Let us

dynamics or the distinct element meth@EM) [27]. (Even riefly explai_n how the traffic model is c_iifferent from other
the DEM contains many phenomenological assumption .ydrodynamlc model;. The model con3|§ts 9f coupled equa-
which have not been justified from the theory of elasticity 10NS for the density fielgp and the velocity field/ supple-
[28].) As is well known, simulations of the DEM are not mented by its average as
always helpful in understanding the mechanism of granular P
flow. Thus, what we need is a good phenomenology that can w_ —V-(pv),
apply to many phenomena. ot

One popular approach to describing granular flows is to
adopt hydrodynamic equations derived from a kinetic equa- av —
tion like the Boltzmann equation based on the Chapman- o PV Vv=—L(p)(v=v)=V.T, @
Enskog scheme. This approach has been successful in de-

scribing molecular gas kinetics and in deriving the Navier-ywhereT is the stress tens¢assumed to be Newtonian in this

Stokes equation. However, this approach is not free fromynajysig. A friction term proportional ta is not allowed in

phenomenology when the density of particles is high. Sincghe ysual one-phase hydrodynamics, because any short range

granular systems cannot be uniformly dil(i29], this defect  jnteractions among particles reduce to the stress tehgor

is serious for granular hydrodynamics. In particular, whenthe continuum limit. However, it is interesting that Knigtt

we are interested in dense flows under the effects of gravityy). [17] also suggested that their experimental results can be

this approach cannot be justified from microscopic phySiCSexplained if a friction term as in Eq1) exists (and the

Although the Enskog equation is sometimes used as a micrcb‘ressure is negligible

scopic starting equation instead of the Boltzmann equation, The onset of convective flow in vibrating beds, as well as

its derivation cannot be justified even in systems withouihe definition of viscosity in such circumstances are dis-

dissipation[30]. o ~ cussed in Ref[47]. There is a report that fluid motion in
Hydrodynamics based on gas kinetics may be applicablgjprating beds is analogous to Fermi liquid thepsg]. Most

to rapid granular flow§31] where the system is kept in rela- phydrodynamic models to describe granular flows are as-

tively low density and does not include any stagnant regiong;med to be Newtonian models, however. The main reason

Savage and Jeffrej32] calculated the stress tensor from awhy a Newtonian model is adopted is its simplicity for

modified Enskog equation, taking into account effects of in-analysis. On the other hand, granular flow is obviously non-

elastic collisions. The result can be non-Newtonian when th@ewtonian in actual situations. We also note that in many of

shear is strong and Newtonian when the shear is weak. Thejhe models effects of dissipation appear only in the equation
method is applicable to dry debris floW@3]. Their analysis  for energy balance.

based on the kinetic equation is summarized in Rg¥d-—

36] and some of their results are supported by experiment

[37]. Haff's phenomenological granular hydrodynam|gs]

is consistent with that obtained from the kinetic approach. As mentioned in Sec. Il A, the hydrodynamic approaches

Thus, granular hydrodynamics was accepted as being supased on an analogy with gas kinetics cannot be widely used.

ported by microscopic physics in the 1980s. Thus, we had better seek another hydrodynamic approach
In the 1990s we have recognized that some assumptionshich is more realistic in actual situations. In fact, appropri-

used in granular hydrodynamics are violated. Systems cannate hydrodynamic models have an industrial application, be-

be isotropic and homogeneous. Even if we start from dilutecause particle simulations such as the DEM can treat only

and homogeneous initial conditions, granular gases without 000 000 particles, which is not a sufficiently large number

B. The outline of Kanatani’'s formulation
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to design actual plants. Note that the scaling of particle simu- Kanatani determined the stress tensor and the coupled

lations is not so clear at present that we can extrapolate th&tress tensor from physical considerations of microscopic

results of simulations. granular motion. Kanatani’s constitutive equation for the off-
In this case we need to choose appropriate constitutiveiagonal part of the stress tensor is summarized as

relations for the stress tensor. One successful one is by

Goodman and Cowifd9], which obtains good agreement of Tji=—pd;i+C(p)w,

the theoretical result for granular flow profile in a pipe with
experimen{50]. We cannot generalize this success to other [i @_4_%_ 1 . ﬂ) _,_E i _ ﬂ_w.i>
situations, however, because the model is too complicated. 101ax;  ax 3 71ax) 2\ax; ax !

Kanatani's formulation of micropolar fluid mechanics (5)
gives a general framework for granular hydrodynanics.
Kanatani’s calculation of the pipe flow recovers the result byfor developed flows and
Goodman and Cowifi49]. Unfortunately, his paper is not

well known because it is published in an engineering journal p|3(dv; dv; 1  duy
written in Japanese, but it is an important paper which in- Tji= _p5ii+CK;a 10 ﬁﬂ;—xi_ 39 g%,
cludes careful considerations of physical processes. .
His model consisting of particles with radius, is as- 1(dv; dvj 5
sumed to obey the equations of continuity as 2 ﬁ_xj_ (9_Xi_‘”ji ©
Dp for slow flows. Here w;;=dv;/dx.—dv;ldx;, C
—=—pV.v, 2 . W) =0V [IXj— dvjlIXi, K
bt * @ =4.\/6mruadp/(3m), and
Dv _ 2,3 2 _
o=V T-0g, 3) C(p)=8V67mT ud:agpop/[15M(po—p)],
wherep, m, T,, po, and u are, respectively, the pressure,
2 Do ~ the mass of a particle, the ratio of translational energy to
—pag ==V -ur+2T. (4 . . .
5 P90 Dt T rotational energy, the density for close packing, and Cou-

lomb’s friction constant. Kanet al. [16] replaceC(p) by
Herev and @ are the velocity and the microrotation, respec-

tively. D/Dt=g,+V-V is Lagrange’s derivativep is the _\/E,u,eTrd3p V10T, T, d3pe(1-e)?
density,T is the stress tensof, is the asymmetric part of the Clp)= 30(d.—d) Jr2O(Xdc—d)(1+e)sin<p’ 0

stress tensor coming from consideration of the microrotation,

g is the gravitational acceleration, ang is the coupled whered is the diameterd, is the mean free path, anrgand
stress tensorépaﬁ in Eq. (4) represents the density of mo- e are the averaged scattering angle and the restitution con-
mentum inertia. This set of equatioii®)—(4) is generally stant, respectivelyw, contains the characteristics of particle

valid for any micropolar fluid. dynamics whose explicit form is given by
3 1 d?
@a= "\ 1gEii Eii t 5 RiiRji + 75 ( Qi + Qujillii + Qi i) ()
|
with EjizD(ji)—%éjkak, Dji=dv;/dx;, Rji=wji=Dyji, As mentioned in the Introduction, Kanatani’'s micropolar
Qyji=dwj;i 19x,, whereDy;, is the symmetric part oD ; model gives a quantitatively accurate result for chute flows
andDy;; is its asymmetric part. with minor modificationg16]. To reproduce the experimen-

tal results, the theory should include some of the character-
one. In fact, if we assume that, is a constant, the model is istics of granular chute fI(_)ws that are different from thosg—: of
reduced to a Newtonian one, althoughcannot be a con- the Navier-Stokes equation. For ex_ample, there is a slip at
i o ' ., the boundary between granular particles and contajids
stant in general situations. We can show that Kanatani'Sere s the angle of repose for granular materials, and yield
model contains some improved characteristics as a hydrodygess exists for the start of the slip motion. Kanatani’s theory
namic model for granular flows when we compare it with 4oes include some of them. In fact, it includes the angle of
conventional ones coming from gas kinetics. The effect Ofreposee* as a parameter where tép is proportional tog.
dissipation appears in the equation of momentum balance; can describe the effective slip because of the particles’
because the effective viscosity is proportional to Coulomb’srotation.(That is, particles in the bottom layer can move with
friction constant. We also note that the radius of partielgs finite velocity under the nonslip boundary conditipiVe
remains in the hydrodynamics. The model is reduced to thalso note that micropolar fluid mechanics including Kana-
Navier-Stokes equation in the limit @f,— 0. tani’'s theory contains a relaxation term in the equation for

The stress tensor in E@5) is not far from a Newtonian
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the microrotatior(4) which reproduces physically reasonable 2, costik) —costiky)
results[as in Eq.(1) of the traffic model[46]]. vy (y)=1-y?>-2 m Sinh(K) ,
B

9
C. Possible application of the micropolar model

to granular flows where the flow direction ix and k= u, ug/8 with the di-

) _ mensionless viscosities of micro-rotatign and ug. Note

It is obvious that there are gaps between granular flowsnat we need translation of the parameters from(Bd..9 of
and the micropolar fluid model. The most serious objectiongef. [4] into Eq. (9), because we adopt the dimensionless
is that granular materials have completly different Staticparameters introduced in this paper. Equati@nis similar
properties _from any kind of fluids that do not have she_:arto previous reports on granular pipe flof49], though the
stress, while continuous models of the granular materialgensity is not uniform in actual granular flows. It is interest-
have shear stress. The_ saturation of the pressure is known @9 that the simulation by Peng and OHi&2] is similar to
Janssen's law52], which is derived from a continuous gq. (9). They adopt the lattice gas cellular automata method
model with a suitable constitutive relation. The concept Ofyhich does not introduce any explicit rotation of particles.
the pressure might thus be ill-posed even in slow granulainys, the microrotation may not have to be identified with
flows [53,54. As a result, slow fluid properties are expectedine rotation of particles(iv) Many models under steady
to be considerably different from what we expect from New-fioys may reduce to a linearized Newtonian model in the
tonian flows[55]. In fact, granular flows sometimes coexist yiscous limit, which is also physically relevant as creep flow
with the stagnant regions. Since statics is out of our scope @4 actual situations.(v) The micropolar fluid model for
least in this paper, we cannot characterize such a coexisten@eanmar flows by Kanataril5,16] can actually reduce to the
of statics and dynamics in granular materials with the mi-Newtonian model when we assume a constant ( the
cropolar fluid model. o preaveraging approximatianThus, from the great success

However, the above objection may not be fatal, for thepf Kanatani’'s micropolar fluid mechanics in chute flows, it is
following reasons(i) Continuous approaches for statics arepatyra| to investigate fundamental properties of its simplified
accepted as standd®6—59. (ii) If the effect of the sidewall ,0del. (vi) Most granular hydrodynamic models are as-
is negligible, one of the directions of the principal stress iSg;med to be Newtonian. In other words, we expect that there
vertical for active state@he static modeof continuous gran-  gre some common features of granular flows which may not

ules. Along this direction there is no shear stréss., the  gisappear under the assumption of Newtonian flow.
tensor is diagonalizedand the static pressure is identical to

that in a stationary fluid52]. Thus, if we discuss the dy-
namic properties of granular flows far from the boundary, we lIl. GENERAL FRAMEWORK
may expect that fluid models can be used to describe the | this section, we present the general framework for the

characteristics of granular flowsii) After the flow is gen-  cajculation of slow micropolar fluid flows. The contents are

erated in such a situation, it can be maintained easily. Thugngependent of the granular hydrodynamics discussed in the
the static properties are suppressed in these césgsthe  previous section.

experiment and simulation by Karet al. [16] strongly sug- Let us restrict our interest to steady viscous flow around/
gest the relevancy of the micropolar fluid model in nonstaginside a sphere or a cylinder, i.&/dt=0 in Egs.(2)—(4).
nant granular flows. For simplicity, let us use dimensionless quantities for later

The second serious objection is that the granular flow igjiscussion, which are normalized by the velocity far from the
not Newtonian. In fact, Kanatani's micropolar granular fluid sphere or the cylindefin cases of flow past a sphere or a
model [15,16] is a strongly nonlinear and non-Newtonian cyjindep, and the radius of the sphere or the cylinder.
fluid. However,(i) our main aim is to study the fundamental ~ 1,5 we start from the following set of equations. Slow
properties of micropolar fluid mechanics, which is needed tgjq\s satisfy the incompressible condition because the ad-

check the validity of micropolar fluid models for granular \,action termv- Vv is negligible. The incompressible condi-
flow. For this purpose Newtonian models are appropriate begqp, is given by

cause they can be investigated by the analytic mettiod.

The flow of granular materials can be smooth when the shear divv=0 (10)
rate exceeds the yield value, and flows are metastable when '

the shear rate is a little lower than the yield. This kind of
smooth flow may be approximated by Newtonian fldii.)
The profile of granular flow in a pipe is similar to the solu-
tion of the Newtonian micropolar fluid model, namely, the
solutions of the Newtonian micropolar fluid model are far Rv-Vv=—Vp+Av+py, rote, 1D
from those of the Navier-Stokes equation. For example, the

exact solution of Poiseuille flow between parallel plates for avhereA is the LaplacianR is the effective Reynolds num-
Newtonian micropolar fluid under the nonslip boundary con-ber, p is the pressurew is the microrotation, angk, is the
dition [4,60] can describe plug flow49,50,61,62 If the  dimensionless viscosity of the microrotation field which is
boundary condition is assumed to be nonslip, the profile conassumed to be less than 2. Note that the Reynolds nuRiber
tinuously changes from parabolic to plug flow depending orand w, are represented by quantities with physical units as
the coefficient of restitution[62]. The profile of two- R=pUal/(n+ %) and u,=2%,/(n+n), wherep, U, a,
dimensional(2D) Poiseuille flow in the rangg=[—1,1] 7, and 7, are the density, the magnitude of the characteristic
under the nonslip boundary condition is given [y flow, e.g., the flow far from a sphere/cylinder, the radius of

wherev is the velocity field. The equation for momentum
conservation i$4]
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the sphere/cylinder, the conventional viscosity, and the viseontainer is rather more specialized than flow around a
cosity for microrotation, respectively. The flow of microro- cylinder/sphere. There are some unclear points in setting up
tation is governed by the problem for flow inside a cylinder.
What we will do is to carry out a systematic calculation of
E Vo= 10tV— 2+ 1V div ot uaA 12 the flow field around a sphere or cylinder. For this purpose,
P W=V =20t uA Vv ot pglo, (12 adopt the matched asymptotic method developed by Ka-
plun and Lagerstrorfi22—-26 for the 2D problem. There are
wherel is the dimensionless microinertia coefficigdl. I several advantages of this scheme. First of all, this method
general, divw is not equal to zero but it is easy to show that can discuss the systematic expansion of the Reynolds num-
div =0 (13 t_)er. Second, this method can_simplify _complicated calcula-
tions. For example, Buchukuri and Chichinad24] could
for axial symmetric flows. Later we will discuss axially sym- Nt obtain an explicit solution of the Oseen approximation of
metric situations and assume H@a3). Thus, we regard the 2D fluid flow. However, as will be shown, even in 2D we dq
microrotation field as incompressible, where the term pronet have to solve the Oseen problem for the micropolar fluid
portional tos, in Eq. (12) is zero in later discussion. Let us model explicitly but need the Oseen solution for standard

remark on the micropolar fluid model. It is obvious that the fluid flow.

model is reduced to the Navier-Stokes equationgpr-0. Let us explain the second advantgge more explicitly. It is
We assume the boundary condition outside theVe!l known that the Stokes approximatigR=0 and u,
sphere/cylinder as =0 in Eq.(11)] is invalid far from the cylinder, and a naive
perturbative calculation from the Stokes approximation en-
v=w=0 at r=1; v=g, w—3rotv as r—w, counters a secular term for the flow around a sphere. There-

(14)  fore, in micropolar fluids, we need careful treatments to cal-

culate the flow around a cylinder/sphere. To remove such

wherer is the distance from the center of the sphere or theyifficulties we introduce an appropriate contracted coordi-
cylinder whose radius is unity, amg] is the unit vector along pate as

the x axis. The above boundary conditions are not always

valid in micropolar fluids. We assume the nonslip boundary X=Rx, y=Ry. (19)
condition on the boundary surface, which ensures continuity ’

of flow in the entire region. Effective slip of particles is | ot s introduce scaled variables

included as microrotation. The microrotation on the surface

is assumed to be zero because the center of rotation cannot ~ ~ ~
exist on the surface but exists at a position removed by the v=ecta(Ru(n),  w=a(RRwe,, p—Ra(R)p,(ZO)
particle radius. The microrotation coincides with the rotation

of the flowv if the place is for enough away from the sphereynereg, is the unit vector vertical to the flow direction. The

or cylinder. o . function a(R) will be determined by the matching. Thus,
On the other hand, inside the cylinder, we assume an aXls.g., in the 2D case Eqgél1) and(12) are reduced to
ally symmetric flowv=(v,(r,z),00,(r,z)). The boundary
condition is assumed to be au o 5
—=—Vp+Au+p, rot(we,), (21)
v, ox
vr=7=0 atr=0, v,=0 atr=1. (15

” _ Rl do du, du, _~ o
In addition to Eq.(15) we have a conservation law, — —=——-—-2w+ugR?Aw, (22
Mr gx  ox  ay

1
fodrruz(r,z)zo. (16 wheree, is reduced toe, in 2D. Thus, in the limit ofR
—0, we obtain the two relations
For two-dimensional casedlows inside a box where the

horizontal coordinate satisfiegx|<1 and the vertical coor- ~ 1fduy du| . ~ <
dinate isx), Egs.(15) and (16) are replaced by ARV rot(we;) = —zAu. (23
vzzﬁzo at x=0, v,=0 atx==1 (170 The situation in 3D is almost the same as that in 2D. The
IX outer equations of the micropolar fluid are thus reduced to
and
Ju ~— Mr | ~
1 —=-Vp+ 1—7 Au+O(R) (24
f dxv,(x,z)=0. (18 o
-1
in both the 2D and 3D problems. The solution of E2¢) is
Note that we do not impose,=0 atr=1 for 3D or atx= regular even far from the cylinder. As a result, we do not

+1 for 2D, because this condition produces an overcompletbave to solve the Oseen approximation of E44) and(12),
problem. Thus the problem inside a cylinder or a rectangulawhich cannot be represented by an explicit fd2d]. Equa-
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tion (24) supports the validity of the boundary conditien Ap=0. (32
—rotv/2 asr—o in Eq. (14).

Since we know the solution of E¢24) for 2D and 3D, That is, the pressure is a harmonic function. On the other
what we need to solve is the Stokes approximation of Eqghand, the rotation of Eq25) is
(12) and(12) in an axially symmetric flonw=we, as

A rotv+ u, rotrotw=0. (33

—Vp+Av+pu, rotf(we, )=0 (25 o . ) )
Substituting Egs(28) and (30) into Eq. (33) with the aid of

and an elementary formula of vector analysis, we obtain
(rotv), — 2w+ ugAw=0 (26) D*W + u,D2® =0. (34)

near the cylinder or the sphere. The solutions of 4) and  On the other hand, substituting E(9) into Eq. (26) we
Eqgs.(25),(26) will be connected with the aid of the matching gptain

asymptotic technique.
D2W +(2— ugD?)®=0. (35
IV. FLOW PAST A SPHERE

From Egs.(30) and(34), Eq. (35) can be rewritten as
In this section let us look for a solution to describe a

three-dimensional steady flow past a sphere. The veetors D%(D%?-¢2)d=0, (36)

and w can be represented by their elements in polar coordi-

nates as= (v, ,v4,0,) andw=(w,,w,,0,), where the po- where

lar axis is identical to the axis and its origin is the center of

the sphere. Here, in the previous section is replaced &y. £= | M8 37)

Under the assumption of axially symmetric flow wi 2—u,

=0, there is a stream function which is related to the veloc-

ity field Note that Eq(2.5) in Ramkissoon’s pap¢i9], which can be
translated into

1 A 1 0¥
r’sing 00 0

- 2 1

rsing or @ <D=—(D2\P+@D4‘l’), (39
2 My

in three-dimensional systems. On the other hand, &,gand

wy are constants which are independenvofo we assume

w,=wy=0 and

is not correct, but the correct correspondence from E3b.
and(35) is given by

1
® _ ( 2qp 4 MB 4 )
— d=—|DV+—D"V|. (39
“e"rsing 28) 2 o
in 3D. As a result, Ramissoon’s calculatiph9] leads to inaccurate

In 3D polar coordinates, there are the useful relations ~ results. N
The boundary condition&l4) now reduce to

(rotv),= — ———D?¥ (29 A
T rsind V(10)=0, —-(19)=0, ®(LH=0 (40
and
on the surface of the sphere, and the asymptotic conditions as
1
A(rotv) =~ ——D*V, 39 T

V—ir?sing; d——1iD?V, (41)
where the differential operatd? is defined by
where we use Eqg28) and (29). Thus, the problem is re-
duced to a boundary value problem of E¢34) and (36)
. (31 under the boundary conditior{d¢0) and (41).
Equations(34) and (36) are fourth order partial differen-

. . B - 2 . .
Thus, it is convenient to represent the flow by the streanfi@l €quations. A reduced variabig=D"® satisfies

function . (D?2—¢2)¢=0. (42)

D?=

(92+sin0 gl 1 4
(9[‘2 rz 00\sing 96

A. Stokes flow Assuming the separation of variablesgs R 4(r)© 4(6) we

Let us consider the solution of the Stokes equati@s  obtain
and (26). The method of calculation itself is essentially the R )
same as that by Ramkissoph9]. In such a case from the rz(&—gz) _ siné i( 1 dO,
divergence of Eq(25) we obtain Ry 0, do\sing do
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where\ , is a separation constant. The equation @y is
reduced to

(1 2)d2W ) dW+ N 1
B Nl ke _
dz? dz 22

)w=o, (44)

where z=cos¢ and 0 ,= (sin f)w(cose). Equation(44) is
the equation for Legendre’s biponnomiEI,l(z). Thus we
obtain

041(0)=(sinO)P{(cog); Ny=I1(1+1), (45
wherel is a positive integer. The radial equation in E4?3)
obeys

I(1+1)
r? )RM:O,

(46)

d’Ry |
e

where we write the explicit dependenceR®f onl asR,, .
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\y(r,a)zé Ry 1(r)sin 9P} (cos#), (52
where
Ry (1) =ay r'1+ % +Cy 1 34 dy r?!
r r
— 1, Ci € \/%K| +1/2( g) : (53

These are general results for outer solutions without explicit
considerations of boundary conditions.

From the boundary conditio@®1) there are the following
relations:

ag =Cy, =0 (foralll); ay ;=0 (1=2).

(54
From the boundary condition@0) and (41) we can deter-

1
Ay 1= 32,

This equation can be converted into the equation for a modimineby |, dy ;, C;, andbg ;. However, forl=2, we have

fied Bessel function. Taking into account the regularityr of
—o, the solutionR, | must be proportional to the modified
Bessel functiorK, . 15(r/€). Thus, the solution ot can be
written as

o(r,0)= |21 C \/EK, +1,2( %) sin6P(cosh). (47

Note thatK,, 1,(r/&) can be represented by an elementary

vector equations

A|X|:O, |>2, (55)
whereA, is the matrix determined through the boundary con-
ditons, and the transverse ofx is 'x

:(b\p’| ,dq/1| ,C| 1blb,|)- Since Eq(55) should hold for any
parameters, dét, cannot be zero in general. Thus we have

function because modified Bessel functions of fractional orfor |=2. Equationg51)—(53) are now reduced to

der are proportional to spherical modified Bessel functions.

Let us obtain® from the equatioD?® = ¢. It is easy to
show that®(r,8)==|_,Rg (r) 04 ,(6) has the solution

04, =0,,=sinOP(coso). (48)
Thus, the radial equation fd®g | is reduced to
d>  I(1+1) R _c \ﬁK r) o)
dr2 r2 eI=MIN g g )

The general solution of Ed49) is given by a linear combi-

nation of homogeneous solutions and a special solution of
the inhomogeneous equation. The independent homogeneous

solutions of Eq(49) arer'** andr ~'. From direct substitu-
tion, it is easy to show a special soluti&}'>,

r r
Ry1°=€°C \/%le/z(g) :

Thus,®(r,6) can be represented by

(50

b<I’|
aq;'||’|+l+ _I’
r

cp(r,a):g)l

+C gz\ﬁK (L)
| f 1+1/2 §

Similarly, from Eqgs.(34) and(51) we obtain

sinP}(cosh). (51)

by ;=dy,=Ci=bg,=0 (56)
1 b
P(r,0)= ErZJanLdr—,urcg“e*”§ 1+§ Sirt,
(57)
and
bq’ 2.—rl¢ § :
d(r,0)= —+Cé% 1+ Sirfe, (59

where b=by ;, d=dy;, C=({y7/2)Cy, and bgp=Dbg ;.
SinceD?W¥ — — (2d/r)sir?g asr —, the second relation of

Eqg. (41) leads to
be=d. (59

(Note that Ramkissoon’s result becombg=—d.) The
other three boundary conditions in E¢40) and (41) deter-
mineb, d, andC as

1 3(1+H(1+p )

b= T it el
o 80+

ST 21D -md)’
3ef

c= . (60)
267 2(1+ &)~ €]

Thus the problem has been solved.
From Eq.(27) the explicit profile of the velocity field is
given by
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2b 2d 4
v=| 14—+ — Z#rcg—(1+ §) e cos¥,
r
b d 3 2
ve=| -1+ - Mcg 1+f+§) f@%ma
r
(61)
andw,, is
e o8l
= — — e § —
w, r2+Cr e 1+r sing. (62
The pressure is determined from Eg5). Each component
obeys
p_ 1 )
— +
o r2sing 39(D V@)

Lop ! D2+ u, P 63
T rsmeﬁ( Hr ). (63

FIG. 1. The stream line of three-dimensional micropolar Stokes
flow. The black circle represents the sphere. The flow direction is
It is easy to show that the terms proportional to the sphericahorizontal.
modified Bessel function cancel with each other in EBR)
as expected from the properties of the harmonic functionwhere Q= (rotv),/2, =;; is the asymmetric part of the
The terms in proportion to fi/andr? in ¥ disappear in Eq. Stress tensor, and; is the symmetric part.

(63) as in conventional cases. Thus, the pressure is deter- Let us consider the contribution from to the drag force.
mined by the Stokes pole &, which is proportional ta as From considerations of symmetry, the drag force from this
Y =drsirfand to 1f in ® as®g=(d/r)sir? 6. Fromthe  partis

relationD?W g+ u, = —[d(2— w,)/r]sir? # and Eq.(63),

. z
we obtain Ffr:f 7'rx|r:1dS:/-‘*rf ( - XQz"' —Qy)ds, (67)
IS IS r r
d(2—pur) ; ;
=———, C0sf+po, (64) where dS represents the integration on the surface of the
r2 sphere. To derive the last expression in Ey) we use Eq.
wherep, is an unimportant constant. 3f

The flow is similar to conventional Stokes flow, which is
symmetrical about a plane normal to the external fl&ig.
1). The most significant difference between the conventional ;
Stokes flow and micropolar Stokes flow appears as a local
ized microrotation near the sphef€ig. 2). The micropolar
flow far from the sphere> ¢ is not different from conven-
tional flow.

B. Drag force exerted on a sphere

Let us calculate the force exerted on a sphere in a mi-
cropolar fluid flow. For this purpose we explicitly write the

stress tensor;; as 1t
5+ 1 )(ﬂv‘+av‘)
-p B | et Bt
' 2 )\ ax;  0x; gl
r[Ov; 65
2 X, 0x T Mr€mij®m; (65

. _ o -3 2 = 0 1 2 3
where €, is the alternative tensor of Levi-CivitdNow we
decouple the stress tensor into two parts as FIG. 2. Contour plot of the microrotation field. The situation is

the same as that in Fig. 1. We have not plotted the sphere explicitly

Ti=oij+ 755 7ij= sr€mij(Qm— o), (66) in this figure.



PRE 61

(66) and =0 on the surface of the sphere. Froxir
=cos#, y/r =sinf cose andz/r =sin§ sin¢, Eq. (67) is re-
duced to

2T

F,=— ngCOS(pJ’ deQ,(1,0)sin6=0. (68
0 0
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The solution can be obtained from

V=V,+R¥;+ -+, ®=Dy+RD;+---, (75
whereW, and®, are the solutions in Stokes approximation
in Egs.(57) and(58). To obtain the explicit forms of’; and

@, we need a long and tedious calculation. Thus, we do not

Other contributions for the drag force correspond to those igive the explicit expressions. o
the conventional Stokes problem. The contribution from the However, we note that in the first order approximation the

velocity field is given by
_ My . dug
F,= (1 2)LdSsmﬂ or (1,6)
_2m(2-p)’(149)

201+ 6) - pmé

where we use Eq(61) and [jd@sin® =4/3. On the other
hand, the contribution from the pressure term is

2m(2— pr)(1+6)
21+ 8 —mé

where we usdgdacosza sin#=2/3 and Eqgs(64) and(60).
The total contributiorF, +F,+F is given by

_2m(14§)(2— ) (3 pur)
O D -k

(69

Fo=— LdS pcosf= (70

(71)

Note that we have assumed<2. The result can be con-

verted into physical units. The drag force on the splese
diusa) exerted by a micropolar fluid whose viscosities gre
and 7, is given by

_2m(np+ p)aU(1+&)(2—u)(3—uy)
ot 2(1+8) — € ’

which is reduced to 6naU asu,=27,/(n+ n)—0 and
£—0.

(72)

C. Beyond the Stokes approximation

velocity does not behave properly at infinity. The nonexist-
ence of a second approximation to the Stokes solution in
conventional flow is known as Whitehead's parafi®%]. To
remove this difficulty, we use the matched asymptotic
method as introduced in Sec. Il. That is, we use the outer
solution determined from Ed24) far from the sphere, while
we use the simple perturbative result as the inner solution.
An unknown constant arising from the lack of a boundary
condition far from the sphere is determined by matching the
inner solution and the outer solution. Because E4) is
solvable, it is straightforward to obtain the flow fields as
series expansions &. The explicit calculation will be dis-
cussed elsewhere.

V. FLOW PAST A CYLINDER

As is well known, for conventional viscous flow in 2D,
the solution based on the Stokes approximation does not sat-
isfy the boundary condition far from the cylinder. This is
known as Stokes’ paradox and is more serious than White-
head'’s paradox in 3D. Thus, we need to adopt the matched
asymptotic method from the lowest order expansiomRof

In two-dimensional systems, the stream function is de-
fined through

v
o

19v

=T o8 Vo (76)

Uy

These choices automatically ensure Eid). In 2D, the field

variables are written as= (v, ,v,) and w=w,z wherez is
the unit vector vertical to the flow plane.

The procedure is as follows. In the next subsection we
will give the explicit calculation of the Stokes approximation

In this subsection we briefly present the procedure to calys an inner solution. In Sec. VB, we will obtain an outer
culate the flow and the drag beyond the Stokes approximasp|ytion and use the matched asymptotic method. In Sec.

obtain an explicit representation of the flow field based on

the Oseen approximation. Thus, it is natural to adopt the

series expansion of the Reynolds numBeFor this purpose
we rewrite the full equation§ll) and(12) for ¥ and® as

R (o 0 9V o s wa\If 2 9V D2y
2sing| a0 ar  ar a6~ T ¥ a9
=D*W + u,D%D, (73
and
RI 10\1}1 a)+a\1f d w)@
Mrrzsing r 06 r(?f ar \ 9o co
=D?¥ +2® — ugD?d. (74)

A. Stokes approximation as an inner solution

At the first step, let us obtain the solution of E¢25) and
(26) based on the Stokes approximation. From Eg@6) and
(33) we obtain an equation fap, andW¥':

AW+ pu Aw,=0. (77
On the other hand, from E@26) we obtain
AV +2w,— ugAw,=0. (79

From the operation of the Laplacian on E@8) with the
help of Eq.(77) we obtain

A(A=E?)w,=0, (79
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where ¢ is given in Eq.(37). The problem will be solved 1 KI(£Y
under the boundary condition on the cylinder. Although we b= u, - 1—_1) +11.
cannot adopt the boundary condition far from the cylinder, 2 Ki(€77)

we know that the leading singularity comes from a logarith- )
mic divergent term which will be regularized by matching Thus, we obtain
with the outer solution. Thus, higher divergent terms which

obey power laws will be omitted in discussion in this sub- W . . b | , Ka(r/§)
section. The boundary condition far from the cylinder is (r.9)=asind| ar+ —+rinr—pu.g K&)'

w,=— AV, (80

L 1 Ky(r/é)
which is equivalent ta,=rotv/2. o(f,6)=asing| = -+& Gol (88)
Taking into account the boundary condition on the cylin- .

der Like the usual Stokes problem in 2D, the flow field produced

v from Eq. (88) has a logarithmic singularity in the limit of

v (1,0)= 7(1,0)= w,(1,0)=0, 81y —=.

we obtain B. The outer solution and matched asymptotic method

To resolve Stokes’ paradox for—o, we adopt the
matched asymptotic method developed by Kaplun and La-

r
& gerstrom[23]. We reconsider E(88),

£ sinné, (82

Awyr,0)= >, C&”Kn(
n=1

~ b Ky(r/é) | .
v ~a(R —+rinr—pu, &
(r,0)~a(R) ar+r+r nr—mué K& D sing,
(89

whereC? is a constant. Thus, it is easy to obtain the general
form of w, as

- r
w,(r,0)= 21 Ayl "+ b, r "+ Cﬁz)gan(E)

2 sinné. wherew is replaced by a multiplier(R) which is allowed to

(83) depend upon the Reynolds number, because our asymptotic
sequence is unspecified. Although this approximation cannot
It is obvious thata, ,=0 for all n to satisfy the boundary satisfy the conditiorv=g, in Eq. (40) or ¥ —r sing for r
condition far from the cylinder. From the last equation of —, it can be matched to the uniform stream, regarded as
(81) we obtain the first term of an Oseen expansion.
Now, introducing a new variable

b, n=—C{Kn(£ HE (84)
R e e 90
Similarly, we can obtain? as P = T (90)
b{2) r . .
W(r,0)=sind a&?)r+ T‘P+ar |nf—Mr§4C(12)K1<E) the outer equatio24) is
= b(® M —Vp+Au (91)
+> sinne{ﬂmg)ﬂrz” ax ’
n=2 rn '
; whereV = (1— «,/2)~1V. Then the Oseen expansion begins
_Mng)g‘lKn(E) ) (85  with
. o 1
As in the case of the flow past a sphere, it is easy to show Y~ Zpsin 0+--- as e—0. (92

that the moden=2 will become zero. Thus, the problem can
be simplified. From Eq(80) and the first two relations of Eq.

(81) we obtain Writing the Stokes expressidi®@9) with the Oseen variable

(90), the leading term is now
v a(e) .
§2K1(§_1) ! \I”‘“Tln(llf)p siné, (93)
(86)

by=—a, a@=ad, b@P=ab, CP=

where a(€) = a(R) in the limit of e—0. This matches Eq.

where (92) if a(e)=[In(1/e)+k] ! wherek is a constant to be

1 KI(£Y) determined later.
a=-| u &l &+ (€ ) —1/: (87) Expansion of the Stokes approximati8®) further byp
2 Ki(&h and a(e) leads to
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1 -
\If~;[1+a(s)(|np—k+a)]psin0. (94) W(r,0)=ale)

. b Ki(r/é) |
ar+—+rinr—pu, & )sma.
f P e

This requires the Oseen expansi@2) to continue as (102

This expression satisfies all the boundary conditions.

P~ E[p sin0+ a(e)y(p,0)+---]. (95) byThe explicit expression of the inner solution is thus given

Substituting this into the full equationy satisfies the linear- . b , Ka(r/§)

ized Oseen equation vi=ale)| at —+Inr—pué T, | €ost,
r rki(€77)

Ai-L)ag=0 (96) b Ki(r/é)
ox ¥=0. vy=al(e€) —é+—2—lnr—1+,u,§1—l>sin6.

r Ki(€7)

The appropriate solution for the stream function can be (103

found as an infinite serig$3].
The fundamental solution due to Oseen gives as the Ca
tesian velocity components

;I:he pressure is similarly determined from E(b) and(76)
as

Iy w_139 AV + 1op__3 AW+
u=—¥ iy Miwg), T oe=—o( Mr@).
d(psind) (104)
— Cz( J [In p+elP cosO2K (/2)] As in the case of 3D, the pressure is determined by the
d(p cosb) Stokes pole¥ ~r Inr. The result is
2 2_
— gl cosd) KO(P/Z)) ) P=pPo— r;“vr a(€e)coso, (105
B Y wherepg is an unimportant constant. Thus, explicit represen-
Uy=- a(p cosh) tations for the inner solution, which can be connected with

the outer solution, are obtained.

d
=2Co———[Inop+ e(p COS(‘))/ZK /2 , 9
29(p sin 0)[ P o(p/2)] 7 C. Drag force exerted on a cylinder
As in the previous section, let us calculate the drag force
exerted on a cylinder by a moving fluid. The drag force is
again calculated from three contributions. The force coming
from the asymmetric tensor is not zero in 2D. From ),

where ¢, is a constant which will be determined by the
matching. The term in Ip at the origin cancels the term
involving Ky(p/2). For smallp we obtain the integrated

form of ¢ as the result is
y~—c Ini+1— sin6+0(p2In p) (98) zmy am ,
2\ T, Y|P pp) FT=—,u,f0 FQ(1,0)|,:1d0=—,u, , Q(1,0)sin6dé,
where vy is Euler's constanty=0.5772... . Using this we (106
find that the Oseen expansi¢®b) behaves near the cylinder whereQ = (rotv),/2 and it is reduced t6(1,6) = 1 dv ,/r.
as From Eq.(87) and (103 we obtain
1 - _
W~ psing| 1+ coa(e) In§+ y—l”. 99) Fr=mua(e)1=pupbe)] (107
where we usd 37sir?g=m and
This can match Eq94) if we choose
1
N — 1mee—1y _ ree—1 2 -1
c,=1; k=a—y+1+In4. (100 B(&)= 2K1(§71)[K1(§ )= K (E )+ &K (7))
(108

Thus, we obtain
The force coming from the normal stress is given by

(101) 2w
Fp=— . pcosfdO=m(2— u,)a(e) (109

-1

4 ~
a(e)z(ln;—y-i-l—i-a

This vanishes foe— 0. The explicit expression near the cyl-
inder is thus given by and the force from the shear stress is
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=(v,(r,2),0p,(r,2)). In this case the flow can be repre-
sented by a vector potential or a stream function

. Mr 2m . dug
F¢= (1 ?) . dasmaa—r

r=1 =rof ¥ (r,z)e,] or
=7m(2—pr)a(e)[1—uB(E)]. (110 P 14 - 1
v=———; v,="—(r¥).
Thus, the total force is given by ' Jz Zoroor
Fioi=male)[4— pm —2m B(8)], (111) Since the microrotation field is representeddywy: w e, , the

basic equation$25) and(26) can be rewritten as
which can be rewritten as

DY+ u, D%w,=0 (115
Fiotr=m(n+n)Ual(e)[4—pu,—2u,6(8)] (112 and
in physical units. This is reduced to the result obtained from DXD?— ¢ ?)w,=0, (116
the Oseen approximatide4] as F,;— 47 nU/(S+1/2) in
the limit of u,—0 whereS=In(4/R) — y. whereD? is defined by
#? 19 1
VI. STEADY FLOW INSIDE A CONTAINER pe 1o L & (117

. . . . . I 2 ror 2 2
In this section we discuss steady circulation flows inside a or r* oz

container. Since the flow is confined in a finite region, the

Stokes approximation may give an appropriate solution forl '€ boundary conditioril5) and the conservation |a¢L6)

the slow viscous flow. Thus, the basic equations in this secd'® reduced to
tion are Egs(25) and(26). P
As mentioned in Sec. Ill, we do not impose the boundary (1z7)=w,(12)=0, —=D2¥=w,=0 at r=0.
conditionv=0 but the slip boundary conditiofl5) on the Iz
surface of the container, because otherwise the problem be- (118

comes overcomplete. This may be understood from the anaIL-J ‘ v th diti h f evlind ilb
ogy of granular flows as follows. The rotation of particles nfortunately, the conditions at the center of cylinder will be

without the slip boundary produces a fast flow near thddentities, which will not be useful to determine unknown
boundary. The width of the boundary layer is as thin as th&OnStants. ,

particle radius. If we are able to normalize the flow by the ASSUMINGD“w,=Ry(r)Z(2), Eq.(116) is reduced to
fastest flow rate near the boundary, we may be able to solve

the problem under the condition=0 on the wall. It is dif- i
ficult, however, to determine the position where the flow rate R,
is maximum theoretically, and the width of the boundary

layer becomes zero as the radius of the particles becomeghere \ is a separation constant. In the standard sekse,
zero. Thus, we adopt the slip boundary condition in this secshould be negative, because a flow exists along the stream

tion. o line (¥ is a constant In this case the flow becomes a cir-
We note that the actual situation needs an external forcgylar flow or a convection. Fox<0, Z is expected to ba

to maintain the flow. If we regard this flow as an approxi- = \ =(n/H)?2 with a positive integen, and

mate one for vibrating beds, there is external vibration and

stationary gravity. If we assume that the time dependence of Z,(2)=sin(nz/H), (120

the pressure, the velocity, and the microrotation are repre-

sented by a common functigg (t), e.g.,Z(t)=1—Tcost, whereH is the height of the cylinder. The equation 1y is

Eq. (25) is now replaced by now solvable ai,~1,[r/(H/n)?] wherel(z) is the modi-
fied Bessel function. Thus we obtain

F—Frdr_r_Z —=——==—N\, (119)

Z 42

d2 1 d 1) 1d2z
)=

EM[-V(—z+p)—e,+Av+pu, rot(we, )]=0,
(113 ) - r _[nz
Dewy= 2 Cﬁ,nll (H/—n)2 sm(F), (121)

where the gravity- e, and the stationary pressurez cancel
each other. Since the time dependence and the effect of grav- . .
ity in such a linear system can be absorbeift), we can wherec, , is a constant. For later use, we discuss only the

discuss the flow inside the container as a stationary problen'ivr.\:g%ebrt‘;nl because of its fundamental role. From Etp1)

A. Flow inside a cylinder

z
_ 2 -
Let us demonstrat