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Slow viscous flows in micropolar fluids
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A systematic calculation of micropolar fluid flows around a sphere and a cylinder is presented. The explicit
velocity fields and the drag forces exerted by the fluid flow in both two and three dimensions are obtained. The
solution of a steady micropolar fluid flow inside the cylinder is also obtained and is identical to the form
observed in an experiment on granular vibrating beds.

PACS number~s!: 45.70.Mg, 47.15.Gf, 83.50.Jf
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I. INTRODUCTION

Micropolar fluids are fluids with microstructures. The
belong to a class of fluids with a nonsymmetric stress ten
Micropolar fluids consist of rigid, randomly oriented~or
spherical! particles with their own spins and microrotation
suspended in a viscous medium. The concept of micror
tion was proposed by Cosserat and Cosserat in the theo
elasticity@1#. Condiff and Dahler@2# and Eringen@3# applied
the concept to describe fluids with microstructures in
middle of the 1960s. Recently, a comprehensive textbook
micropolar fluids has been published@4#.

Physical examples of micropolar fluids can be seen
ferrofluids @5#, blood flows@6,7#, bubbly liquids@8#, liquid
crystals@9#, and so on, all of them containing intrinsic po
larities. Thus, micropolar fluid mechanics is not a usel
generalization of the Navier-Stokes model, but is a phy
cally relevant model that has many applications.

The most interesting application of micropolar fluid m
chanics is to describe granular flows@10–14#. In fact, granu-
lar flow is one of the flows that have microstructure a
rotation of particles. Thus, Kanatani@15# has formulated a
micropolar fluid model for granular flows. Kanoet al. @16#
have confirmed the quantitative validity of the micropo
fluid model in a chute flow of granular particles by compa
son of their simulation of micropolar fluids with their exper
ments. It is worthwhile to indicate that the velocity profile
the chute flow~vertical component to the slope! obtained
from the micropolar fluid model@16# is far from the para-
bolic curve expected from the conventional Navier-Stok
flow, but is similar to a linear function when the slope is n
large. For larger slopes, the profile becomes concave~i.e. the
power index is smaller than 1! with surface slips. Although
we do not know whether the micropolar fluid model is a
plicable in other situations of granular flow, it is worthwhi
to investigate fundamental properties of micropolar flu
from the viewpoint of granular physics.

In this paper, we focus on slow viscous flows of microp
lar fluids. The main purpose of this study is to clarify th
mathematical structure of the creep flow in a Newtonian
cropolar fluid model. This motivation is independent of o
interest in granular flows. The main reason why we adopt
Newtonian model is its simplicity and its generality. We al
look for the possibility of applying the Newtonian micropo
lar fluid model to granular flows as a phenomenological
scription.
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If we admit the relevancy of micropolar fluid mechanic
it is obvious that the flow around a cylinder or a sphere a
its drag force play fundamental roles. Thus, we will calcula
the fluid flows under such circumstances. We will also d
cuss a steady flow inside a container. The result insid
cylinder is identical to that observed in an experiment
vibrating beds@17#. We will comment on the steady flow
inside a rectangular container, which also gives identical
sults to those in experiments and simulations@17,18#.

There are some relevant previous investigations on cr
flows in micropolar fluid mechanics@4#. In particular,
Ramkissoon@19# has obtained the solution of a micropol
fluid flow around a sphere and the drag force exerted on
sphere. Later, Power and Ramkissoon@20# presented a fun-
damental solution, i.e., the Green function, etc., the Sto
sian micropolar flow. It seems, however, that Ramkissoo
calculation@19# contains minor mistakes. Thus, we may ne
a revised calculation. Although Buchukuri and Chichinad
@21# obtained the fundamental solution and predicted
fluid flow around a cylinder as an integral form, they cou
not present the explicit velocity field and the drag forc
Here, we will give explicit expressions based on the alg
rithm by Kaplun and Lagerstrom@22–26#.

The organization of this paper is as follows. In the ne
section, we will briefly review studies of granular hydrod
namics. This section consists of three parts. The first pa
devoted to introduction of the difficulties of the convention
Chapman-Enskog approach to deriving hydrodynamic eq
tions from kinetic theory. In the second part we will expla
the outline of Kanatani’s formulation of granular hydrod
namics based on micropolar fluid mechanics@15#. In the last
part of this section, we will discuss whether Newtonian m
cropolar fluid mechanics can be used in granular flows.
Sec. III, we will explain the general framework for a stea
viscous flow around a sphere or a cylinder. In Sec. IV,
will show the correct calculation of the Stokes flow around
sphere and the drag force. We correct the result obtaine
Ramkissoon@19#. In Sec. V, we will obtain an explicit solu-
tion of the micropolar fluid model around a cylinder by th
method of Kaplun and Lagerstrom@22–26#. We calculate the
drag force exerted on the cylinder. In Sec. VI, we will ca
culate the axial symmetric flow inside a cylinder and a re
angular container. We demonstrate that flows observed
experiments and simulations are similar to the solutions
the micropolar fluid model. In Sec. VII, we discuss the re
evancy of our calculation in granular physics and how
5477 ©2000 The American Physical Society
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5478 PRE 61HISAO HAYAKAWA
improve it. We summarize general features of micropo
fluid mechanics, and conclude our results.

II. REVIEW OF GRANULAR HYDRODYNAMICS

In this section, we present a brief review of granular h
drodynamics. This review may clarify our motivation to a
ply micropolar fluid mechanics to granular flows. If reade
are not interested in its application to granular flows but
interested in micropolar fluid mechanics itself, they can
nore this section.

A. Conventional approaches and their difficulties

It is natural to adopt hydrodynamic approaches to cha
terize granular flows because flows should be described
kind of fluid mechanics based on Euler’s description. Ho
ever, it is obvious that any continuous description has lim
tations, because granular materials consist of visible gra
Eventually, any fluid model cannot be a microscopic mo
but a phenomenology. However, if we look for models th
have a microscopic basis, we have to begin with molecu
dynamics or the distinct element method~DEM! @27#. ~Even
the DEM contains many phenomenological assumpti
which have not been justified from the theory of elastic
@28#.! As is well known, simulations of the DEM are no
always helpful in understanding the mechanism of granu
flow. Thus, what we need is a good phenomenology that
apply to many phenomena.

One popular approach to describing granular flows is
adopt hydrodynamic equations derived from a kinetic eq
tion like the Boltzmann equation based on the Chapm
Enskog scheme. This approach has been successful in
scribing molecular gas kinetics and in deriving the Navi
Stokes equation. However, this approach is not free fr
phenomenology when the density of particles is high. Si
granular systems cannot be uniformly dilute@29#, this defect
is serious for granular hydrodynamics. In particular, wh
we are interested in dense flows under the effects of grav
this approach cannot be justified from microscopic phys
Although the Enskog equation is sometimes used as a m
scopic starting equation instead of the Boltzmann equat
its derivation cannot be justified even in systems with
dissipation@30#.

Hydrodynamics based on gas kinetics may be applica
to rapid granular flows@31# where the system is kept in rela
tively low density and does not include any stagnant regi
Savage and Jeffrey@32# calculated the stress tensor from
modified Enskog equation, taking into account effects of
elastic collisions. The result can be non-Newtonian when
shear is strong and Newtonian when the shear is weak. T
method is applicable to dry debris flows@33#. Their analysis
based on the kinetic equation is summarized in Refs.@34–
36# and some of their results are supported by experim
@37#. Haff’s phenomenological granular hydrodynamics@38#
is consistent with that obtained from the kinetic approa
Thus, granular hydrodynamics was accepted as being
ported by microscopic physics in the 1980s.

In the 1990s we have recognized that some assumpt
used in granular hydrodynamics are violated. Systems ca
be isotropic and homogeneous. Even if we start from dil
and homogeneous initial conditions, granular gases with
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gravity form stringlike clusters in which the density is ve
high. Thus, it has become the consensus that hydrodyna
cannot be used, at least in one-dimensional systems@39–41#.
Similarly, Breyet al. @42# have shown that the velocity dis
tribution function obeys a power law, and hydrodynam
equations break down when the restitution constant exce
a critical value.

On the other hand, there are some applications of gran
hydrodynamics as phenomenology. Bourzutschky and Mi
@43# applied hydrodynamics with the slip boundary conditi
to granular convection in vibrating beds. Hayakawaet al.
@44# also proposed a hydrodynamic model of granular c
vection and discussed the mechanism of appearance of
vection rolls. Hayakawa and Hong@45# compared the previ-
ous model@44# with a model with a relaxation term as
body force, similar to a model of traffic flows~the traffic
model!. They found that the traffic model is better than t
previous one in capturing the characteristics of granular c
vective flow. Details of the discussion about the traffic mod
can be seen in Ref.@46#. However, the traffic model is a
curious model which violates physical common sense. Le
briefly explain how the traffic model is different from othe
hydrodynamic models. The model consists of coupled eq
tions for the density fieldr and the velocity fieldv supple-
mented by its averagev̄ as

]r

]t
52“•~rv!,

]v

]t
1v•“v52z~r!~v2 v̄!2“•T, ~1!

whereT is the stress tensor~assumed to be Newtonian in th
analysis!. A friction term proportional toz is not allowed in
the usual one-phase hydrodynamics, because any short r
interactions among particles reduce to the stress tensorT in
the continuum limit. However, it is interesting that Knightet
al. @17# also suggested that their experimental results can
explained if a friction term as in Eq.~1! exists ~and the
pressure is negligible!.

The onset of convective flow in vibrating beds, as well
the definition of viscosity in such circumstances are d
cussed in Ref.@47#. There is a report that fluid motion in
vibrating beds is analogous to Fermi liquid theory@48#. Most
hydrodynamic models to describe granular flows are
sumed to be Newtonian models, however. The main rea
why a Newtonian model is adopted is its simplicity fo
analysis. On the other hand, granular flow is obviously n
Newtonian in actual situations. We also note that in many
the models effects of dissipation appear only in the equa
for energy balance.

B. The outline of Kanatani’s formulation

As mentioned in Sec. II A, the hydrodynamic approach
based on an analogy with gas kinetics cannot be widely u
Thus, we had better seek another hydrodynamic appro
which is more realistic in actual situations. In fact, approp
ate hydrodynamic models have an industrial application,
cause particle simulations such as the DEM can treat o
1 000 000 particles, which is not a sufficiently large numb
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to design actual plants. Note that the scaling of particle sim
lations is not so clear at present that we can extrapolate
results of simulations.

In this case we need to choose appropriate constitu
relations for the stress tensor. One successful one is
Goodman and Cowin@49#, which obtains good agreement o
the theoretical result for granular flow profile in a pipe wi
experiment@50#. We cannot generalize this success to ot
situations, however, because the model is too complicat

Kanatani’s formulation of micropolar fluid mechanic
gives a general framework for granular hydrodynamics@15#.
Kanatani’s calculation of the pipe flow recovers the result
Goodman and Cowin@49#. Unfortunately, his paper is no
well known because it is published in an engineering jour
written in Japanese, but it is an important paper which
cludes careful considerations of physical processes.

His model consisting of particles with radiusa0 is as-
sumed to obey the equations of continuity as

Dr

Dt
52r“•v, ~2!

r
Dv

Dt
5“•T2rg, ~3!

2

5
ra0

2 Dv

Dt
5“•mT12T̃. ~4!

Herev andv are the velocity and the microrotation, respe
tively. D/Dt5] t1v•“ is Lagrange’s derivative,r is the
density,T is the stress tensor,T̃ is the asymmetric part of the
stress tensor coming from consideration of the microrotat
g is the gravitational acceleration, andmT is the coupled
stress tensor.25 ra0

2 in Eq. ~4! represents the density of mo
mentum inertia. This set of equations~2!–~4! is generally
valid for any micropolar fluid.
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Kanatani determined the stress tensor and the cou
stress tensor from physical considerations of microsco
granular motion. Kanatani’s constitutive equation for the o
diagonal part of the stress tensor is summarized as

Tji 52pd j i 1C~r!va

3F 3

10S ]v i

]xj
1

]v j

]xi
2

1

3
d j i

]vk

]xk
D1

1

2 S ]v i

]xj
2

]v j

]xi
2v j i D G

~5!

for developed flows and

Tji 52pd j i 1CK

p

va
F 3

10S ]v i

]xj
1

]v j

]xi
2

1

3
d j i

]vk

]xk
D

1
1

2 S ]v i

]xj
2

]v j

]xi
2v j i D G ~6!

for slow flows. Here v j i 5]v i /]xj2]v j /]xi , CK

54A6pma0
3r/(3m), and

C~r!58A6pTrmdc
2a0

3r0r2/@15m~r02r!#,

wherep, m, Tr , r0, andm are, respectively, the pressur
the mass of a particle, the ratio of translational energy
rotational energy, the density for close packing, and C
lomb’s friction constant. Kanoet al. @16# replaceC(r) by

C~r!5
A6meTrd

3r

30~dc2d!
1

A10TrATrd
3re~12e!2

200~dc2d!~11e!sinw
, ~7!

whered is the diameter,dc is the mean free path, andw and
e are the averaged scattering angle and the restitution
stant, respectively.va contains the characteristics of partic
dynamics whose explicit form is given by
va5A 3

10
Eji Eji 1

1

2
Rji Rji 1

d2

40
~Vkk jV l l j 1Vk j iVk j i1Vk j iVki j ! ~8!
ar
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with Eji 5D ( j i )2
1
3 d j i Dkk , D ji 5]v i /]xj , Rji 5v j i 5D [ j i ] ,

Vk j i5]v j i /]xk , whereD ( j i ) is the symmetric part ofD ji

andD [ j i ] is its asymmetric part.
The stress tensor in Eq.~5! is not far from a Newtonian

one. In fact, if we assume thatva is a constant, the model i
reduced to a Newtonian one, althoughv cannot be a con-
stant in general situations. We can show that Kanata
model contains some improved characteristics as a hydr
namic model for granular flows when we compare it w
conventional ones coming from gas kinetics. The effect
dissipation appears in the equation of momentum bala
because the effective viscosity is proportional to Coulom
friction constant. We also note that the radius of particlesa0

remains in the hydrodynamics. The model is reduced to
Navier-Stokes equation in the limit ofa0→0.
’s
y-

f
e,
s

e

As mentioned in the Introduction, Kanatani’s micropol
model gives a quantitatively accurate result for chute flo
with minor modifications@16#. To reproduce the experimen
tal results, the theory should include some of the charac
istics of granular chute flows that are different from those
the Navier-Stokes equation. For example, there is a slip
the boundary between granular particles and containers@51#.
There is the angle of repose for granular materials, and y
stress exists for the start of the slip motion. Kanatani’s the
does include some of them. In fact, it includes the angle
reposeu* as a parameter where tanu* is proportional tom.
It can describe the effective slip because of the partic
rotation.~That is, particles in the bottom layer can move wi
finite velocity under the nonslip boundary condition.! We
also note that micropolar fluid mechanics including Kan
tani’s theory contains a relaxation term in the equation
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5480 PRE 61HISAO HAYAKAWA
the microrotation~4! which reproduces physically reasonab
results†as in Eq.~1! of the traffic model@46#‡.

C. Possible application of the micropolar model
to granular flows

It is obvious that there are gaps between granular flo
and the micropolar fluid model. The most serious object
is that granular materials have completly different sta
properties from any kind of fluids that do not have she
stress, while continuous models of the granular mater
have shear stress. The saturation of the pressure is know
Janssen’s law@52#, which is derived from a continuou
model with a suitable constitutive relation. The concept
the pressure might thus be ill-posed even in slow gran
flows @53,54#. As a result, slow fluid properties are expect
to be considerably different from what we expect from Ne
tonian flows@55#. In fact, granular flows sometimes coexi
with the stagnant regions. Since statics is out of our scop
least in this paper, we cannot characterize such a coexist
of statics and dynamics in granular materials with the m
cropolar fluid model.

However, the above objection may not be fatal, for t
following reasons.~i! Continuous approaches for statics a
accepted as standard@56–59#. ~ii ! If the effect of the sidewall
is negligible, one of the directions of the principal stress
vertical for active states~the static mode! of continuous gran-
ules. Along this direction there is no shear stress~i.e., the
tensor is diagonalized! and the static pressure is identical
that in a stationary fluid@52#. Thus, if we discuss the dy
namic properties of granular flows far from the boundary,
may expect that fluid models can be used to describe
characteristics of granular flows.~iii ! After the flow is gen-
erated in such a situation, it can be maintained easily. Th
the static properties are suppressed in these cases.~iv! The
experiment and simulation by Kanoet al. @16# strongly sug-
gest the relevancy of the micropolar fluid model in nonst
nant granular flows.

The second serious objection is that the granular flow
not Newtonian. In fact, Kanatani’s micropolar granular flu
model @15,16# is a strongly nonlinear and non-Newtonia
fluid. However,~i! our main aim is to study the fundament
properties of micropolar fluid mechanics, which is needed
check the validity of micropolar fluid models for granul
flow. For this purpose Newtonian models are appropriate
cause they can be investigated by the analytic method.~ii !
The flow of granular materials can be smooth when the sh
rate exceeds the yield value, and flows are metastable w
the shear rate is a little lower than the yield. This kind
smooth flow may be approximated by Newtonian flow.~iii !
The profile of granular flow in a pipe is similar to the sol
tion of the Newtonian micropolar fluid model, namely, th
solutions of the Newtonian micropolar fluid model are f
from those of the Navier-Stokes equation. For example,
exact solution of Poiseuille flow between parallel plates fo
Newtonian micropolar fluid under the nonslip boundary co
dition @4,60# can describe plug flow@49,50,61,62#. If the
boundary condition is assumed to be nonslip, the profile c
tinuously changes from parabolic to plug flow depending
the coefficient of restitution@62#. The profile of two-
dimensional~2D! Poiseuille flow in the rangey5@21,1#
under the nonslip boundary condition is given by@4#
s
n
c
r
ls
as

f
r

-

at
ce
-

s

e
e

s,

-

is

o

e-

ar
en
f

e
a
-

n-
n

vx~y!512y222A2m r

mB

cosh~k!2cosh~ky!

sinh~k!
, ~9!

where the flow direction isx and k5Am rmB/8 with the di-
mensionless viscosities of micro-rotationm r and mB . Note
that we need translation of the parameters from Eq.~3.1.9! of
Ref. @4# into Eq. ~9!, because we adopt the dimensionle
parameters introduced in this paper. Equation~9! is similar
to previous reports on granular pipe flows@49#, though the
density is not uniform in actual granular flows. It is interes
ing that the simulation by Peng and Ohta@62# is similar to
Eq. ~9!. They adopt the lattice gas cellular automata meth
which does not introduce any explicit rotation of particle
Thus, the microrotation may not have to be identified w
the rotation of particles.~iv! Many models under stead
flows may reduce to a linearized Newtonian model in t
viscous limit, which is also physically relevant as creep flo
in actual situations.~v! The micropolar fluid model for
granular flows by Kanatani@15,16# can actually reduce to the
Newtonian model when we assume a constantva ~ the
preaveraging approximation!. Thus, from the great succes
of Kanatani’s micropolar fluid mechanics in chute flows, it
natural to investigate fundamental properties of its simplifi
model. ~vi! Most granular hydrodynamic models are a
sumed to be Newtonian. In other words, we expect that th
are some common features of granular flows which may
disappear under the assumption of Newtonian flow.

III. GENERAL FRAMEWORK

In this section, we present the general framework for
calculation of slow micropolar fluid flows. The contents a
independent of the granular hydrodynamics discussed in
previous section.

Let us restrict our interest to steady viscous flow arou
inside a sphere or a cylinder, i.e.,]/]t50 in Eqs.~2!–~4!.
For simplicity, let us use dimensionless quantities for la
discussion, which are normalized by the velocity far from t
sphere or the cylinder~in cases of flow past a sphere or
cylinder!, and the radius of the sphere or the cylinder.

Thus, we start from the following set of equations. Slo
flows satisfy the incompressible condition because the
vection termv•“v is negligible. The incompressible cond
tion is given by

div v50, ~10!

where v is the velocity field. The equation for momentu
conservation is@4#

Rv•“v52“p1Dv1m r rotv, ~11!

whereD is the Laplacian,R is the effective Reynolds num
ber, p is the pressure,v is the microrotation, andm r is the
dimensionless viscosity of the microrotation field which
assumed to be less than 2. Note that the Reynolds numbR
and m r are represented by quantities with physical units
R5rUa/(h1h r) and m r52h r /(h1h r), wherer, U, a,
h, andh r are the density, the magnitude of the characteris
flow, e.g., the flow far from a sphere/cylinder, the radius
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the sphere/cylinder, the conventional viscosity, and the
cosity for microrotation, respectively. The flow of microro
tation is governed by

RI

m r
v•“v5rotv22v1mA“div v1mBDv, ~12!

where I is the dimensionless microinertia coefficient@4#. In
general, divv is not equal to zero but it is easy to show th

div v50 ~13!

for axial symmetric flows. Later we will discuss axially sym
metric situations and assume Eq.~13!. Thus, we regard the
microrotation field as incompressible, where the term p
portional tomA in Eq. ~12! is zero in later discussion. Let u
remark on the micropolar fluid model. It is obvious that t
model is reduced to the Navier-Stokes equation form r→0.

We assume the boundary condition outside
sphere/cylinder as

v5v50 at r 51; v5ex , v→ 1
2 rotv as r→`,

~14!

wherer is the distance from the center of the sphere or
cylinder whose radius is unity, andex is the unit vector along
the x axis. The above boundary conditions are not alwa
valid in micropolar fluids. We assume the nonslip bound
condition on the boundary surface, which ensures contin
of flow in the entire region. Effective slip of particles
included as microrotation. The microrotation on the surfa
is assumed to be zero because the center of rotation ca
exist on the surface but exists at a position removed by
particle radius. The microrotation coincides with the rotati
of the flowv if the place is for enough away from the sphe
or cylinder.

On the other hand, inside the cylinder, we assume an
ally symmetric flowv5„v r(r ,z),0,vz(r ,z)…. The boundary
condition is assumed to be

v r5
]vz

]r
50 at r 50, v r50 at r 51. ~15!

In addition to Eq.~15! we have a conservation law,

E
0

1

dr rvz~r ,z!50. ~16!

For two-dimensional cases~flows inside a box where the
horizontal coordinatex satisfiesuxu<1 and the vertical coor-
dinate isx), Eqs.~15! and ~16! are replaced by

vz5
]vz

]x
50 at x50, vx50 at x561 ~17!

and

E
21

1

dx vz~x,z!50. ~18!

Note that we do not imposevz50 at r 51 for 3D or atx5
61 for 2D, because this condition produces an overcomp
problem. Thus the problem inside a cylinder or a rectangu
-

t
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e
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container is rather more specialized than flow around
cylinder/sphere. There are some unclear points in setting
the problem for flow inside a cylinder.

What we will do is to carry out a systematic calculation
the flow field around a sphere or cylinder. For this purpo
we adopt the matched asymptotic method developed by
plun and Lagerstrom@22–26# for the 2D problem. There are
several advantages of this scheme. First of all, this met
can discuss the systematic expansion of the Reynolds n
ber. Second, this method can simplify complicated calcu
tions. For example, Buchukuri and Chichinadze@21# could
not obtain an explicit solution of the Oseen approximation
2D fluid flow. However, as will be shown, even in 2D we d
not have to solve the Oseen problem for the micropolar fl
model explicitly but need the Oseen solution for stand
fluid flow.

Let us explain the second advantage more explicitly. I
well known that the Stokes approximation@R50 and m r
50 in Eq. ~11!# is invalid far from the cylinder, and a naiv
perturbative calculation from the Stokes approximation
counters a secular term for the flow around a sphere. Th
fore, in micropolar fluids, we need careful treatments to c
culate the flow around a cylinder/sphere. To remove s
difficulties we introduce an appropriate contracted coor
nate as

x̃5Rx, ỹ5Ry. ~19!

Let us introduce scaled variables

v5ex1a~R!u~ r̃ !, v5a~R!Rṽe' , p5Ra~R!p̃,
~20!

wheree' is the unit vector vertical to the flow direction. Th
function a(R) will be determined by the matching. Thu
e.g., in the 2D case Eqs.~11! and ~12! are reduced to

]u

] x̃
52“̃ p̃1D̃u1m r rõt~ṽez!, ~21!

RI

m r

]ṽ

] x̃
5

]uy

] x̃
2

]ux

] ỹ
22ṽ1mBR2D̃ṽ, ~22!

where e' is reduced toez in 2D. Thus, in the limit ofR
→0, we obtain the two relations

ṽ5
1

2 S ]uy

] x̃
2

]ux

] ỹ
D ; rõt~ṽez!52 1

2 D̃u. ~23!

The situation in 3D is almost the same as that in 2D. T
outer equations of the micropolar fluid are thus reduced

]u

] x̃
52“̃ p̃1S 12

m r

2 D D̃u1O~R! ~24!

in both the 2D and 3D problems. The solution of Eq.~24! is
regular even far from the cylinder. As a result, we do n
have to solve the Oseen approximation of Eqs.~11! and~12!,
which cannot be represented by an explicit form@21#. Equa-
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tion ~24! supports the validity of the boundary conditionv
→rotv/2 asr→` in Eq. ~14!.

Since we know the solution of Eq.~24! for 2D and 3D,
what we need to solve is the Stokes approximation of E
~11! and ~12! in an axially symmetric flowv5ve' as

2“p1Dv1m r rot~ve'!50 ~25!

and

~rotv!'22v1mBDv50 ~26!

near the cylinder or the sphere. The solutions of Eq.~24! and
Eqs.~25!,~26! will be connected with the aid of the matchin
asymptotic technique.

IV. FLOW PAST A SPHERE

In this section let us look for a solution to describe
three-dimensional steady flow past a sphere. The vectov
andv can be represented by their elements in polar coo
nates asv5(v r ,vu ,vw) andv5(v r ,vu ,vw), where the po-
lar axis is identical to thex axis and its origin is the center o
the sphere. Heree' in the previous section is replaced byew .
Under the assumption of axially symmetric flow withvw

50, there is a stream function which is related to the vel
ity field

v r5
1

r 2 sinu

]C

]u
; vu52

1

r sinu

]C

]r
~27!

in three-dimensional systems. On the other hand, e.g.,v r and
vu are constants which are independent ofv. So we assume
v r5vu50 and

vw5
F

r sinu
~28!

in 3D.
In 3D polar coordinates, there are the useful relations

~rotv!w52
1

r sinu
D2C ~29!

and

D~rotv!w52
1

r sinu
D4C, ~30!

where the differential operatorD2 is defined by

D25F ]2

]r 2
1

sinu

r 2

]

]u S 1

sinu

]

]u D G . ~31!

Thus, it is convenient to represent the flow by the stre
function C.

A. Stokes flow

Let us consider the solution of the Stokes equations~25!
and ~26!. The method of calculation itself is essentially th
same as that by Ramkissoon@19#. In such a case from the
divergence of Eq.~25! we obtain
s.

i-

-

Dp50. ~32!

That is, the pressure is a harmonic function. On the ot
hand, the rotation of Eq.~25! is

D rotv1m r rot rotv50. ~33!

Substituting Eqs.~28! and ~30! into Eq. ~33! with the aid of
an elementary formula of vector analysis, we obtain

D4C1m rD
2F50. ~34!

On the other hand, substituting Eq.~29! into Eq. ~26! we
obtain

D2C1~22mBD2!F50. ~35!

From Eqs.~30! and ~34!, Eq. ~35! can be rewritten as

D2~D22j22!F50, ~36!

where

j5A mB

22m r
. ~37!

Note that Eq.~2.5! in Ramkissoon’s paper@19#, which can be
translated into

F5
1

2 S D2C1
mB

m r
D4C D , ~38!

is not correct, but the correct correspondence from Eqs.~34!
and ~35! is given by

F52
1

2 S D2C1
mB

m r
D4C D . ~39!

As a result, Ramissoon’s calculation@19# leads to inaccurate
results.

The boundary conditions~14! now reduce to

C~1,u!50,
]C

]r
~1,u!50, F~1,u!50 ~40!

on the surface of the sphere, and the asymptotic condition
r→` are

C→ 1
2 r 2 sinu; F→2 1

2 D2C, ~41!

where we use Eqs.~28! and ~29!. Thus, the problem is re
duced to a boundary value problem of Eqs.~34! and ~36!
under the boundary conditions~40! and ~41!.

Equations~34! and ~36! are fourth order partial differen
tial equations. A reduced variablef5D2F satisfies

~D22j22!f50. ~42!

Assuming the separation of variables asf5Rf(r )Qf(u) we
obtain

r 2S Rf9

Rf
2j22D 52

sinu

Qf

d

du S 1

sinu

dQf

du D5lf , ~43!
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wherelf is a separation constant. The equation forQf is
reduced to

~12z2!
d2w

dz2
22z

dw

dz
1S lf2

1

12z2D w50, ~44!

where z5cosu and Qf5(sinu)w(cosu). Equation ~44! is
the equation for Legendre’s bipolynomialPl

1(z). Thus we
obtain

Qf,l~u!5~sinu!Pl
1
„cos~u!…; lf5 l ~ l 11!, ~45!

wherel is a positive integer. The radial equation in Eq.~43!
obeys

d2Rf,l

dr2
2S j221

l ~ l 11!

r 2 D Rf,l50, ~46!

where we write the explicit dependence ofRf on l asRf,l .
This equation can be converted into the equation for a m
fied Bessel function. Taking into account the regularity or
→`, the solutionRf,l must be proportional to the modifie
Bessel functionKl 11/2(r /j). Thus, the solution off can be
written as

f~r ,u!5(
l 51

`

ClAr

j
Kl 11/2S r

j D sinuPl
1~cosu!. ~47!

Note thatKl 11/2(r /j) can be represented by an elementa
function because modified Bessel functions of fractional
der are proportional to spherical modified Bessel function

Let us obtainF from the equationD2F5f. It is easy to
show thatF(r ,u)5( l 51

` RF,l(r )QF,l(u) has the solution

QF,l5Qf,l5sinuPl
1~cosu!. ~48!

Thus, the radial equation forRF,l is reduced to

S d2

dr2
2

l ~ l 11!

r 2 D RF,l5ClAr

j
Kl 11/2S r

j D . ~49!

The general solution of Eq.~49! is given by a linear combi-
nation of homogeneous solutions and a special solution
the inhomogeneous equation. The independent homogen
solutions of Eq.~49! arer l 11 andr 2 l . From direct substitu-
tion, it is easy to show a special solutionRF,l

NHS,

RF,l
NHS5j2ClAr

j
Kl 11/2S r

j D . ~50!

Thus,F(r ,u) can be represented by

F~r ,u!5(
l 51

` FaF,l r
l 111

bF,l

r l

1Clj
2Ar

j
Kl 11/2S r

j D GsinuPl
1~cosu!. ~51!

Similarly, from Eqs.~34! and ~51! we obtain
i-

y
-
.

of
ous

C~r ,u!5(
l 51

`

RC,l~r !sinuPl
1~cosu!, ~52!

where

RC,l~r !5aC,l r
l 111

bC,l

r l
1cC,l r

l 131dC,l r
22 l

2m rClj
4Ar

j
Kl 11/2S r

j D . ~53!

These are general results for outer solutions without exp
considerations of boundary conditions.

From the boundary condition~41! there are the following
relations:

aF,l5cC,l50 ~ for all l !; aC,15
1
2 , aC,l50 ~ l>2!.

~54!

From the boundary conditions~40! and ~41! we can deter-
minebC,l , dC,l , Cl , andbF,l . However, forl>2, we have
vector equations

Alxl50, l>2, ~55!

whereAl is the matrix determined through the boundary co
ditions, and the transverse of xl is Txl
5(bC,l ,dC,l ,Cl ,bF,l). Since Eq.~55! should hold for any
parameters, detAl cannot be zero in general. Thus we hav

bC,l5dC,l5Cl5bF,l50 ~56!

for l>2. Equations~51!–~53! are now reduced to

C~r ,u!5F1

2
r 21

b

r
1dr2m rCj4e2r /jS 11

j

r D Gsin2u,

~57!

and

F~r ,u!5FbF

r
1Cj2e2r /jS 11

j

r D Gsin2u, ~58!

where b5bC,1 , d5dC,1 , C5(Ap/2)C1, and bF5bF,1 .
SinceD2C→2(2d/r )sin2u asr→`, the second relation o
Eq. ~41! leads to

bF5d. ~59!

~Note that Ramkissoon’s result becomesbF52d.! The
other three boundary conditions in Eqs.~40! and ~41! deter-
mine b, d, andC as

b52
1

2
1

3~11j!~11m rj
2!

2@2~11j!2m rj#
,

d52
3~11j!

2@2~11j!2m rj#
,

C5
3ej21

2j2@2~11j!2m rj#
. ~60!

Thus the problem has been solved.
From Eq.~27! the explicit profile of the velocity field is

given by
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v r5F11
2b

r 3
1

2d

r
22m rC

j4

r 2 S 11
j

r De2r /jGcosu,

vu5F211
b

r 3
2

d

r
2m rC

j3

r S 11
j

r
1

j2

r 2D e2r /jGsinu,

~61!

andvw is

vw5F d

r 2
1C

j2

r
e2r /jS 11

j

r D Gsinu. ~62!

The pressure is determined from Eq.~25!. Each componen
obeys

]p

]r
5

1

r 2 sinu

]

]u
~D2C1m rF!;

1

r

]p

]u
52

1

r sinu

]

]r
~D2C1m rF!. ~63!

It is easy to show that the terms proportional to the spher
modified Bessel function cancel with each other in Eq.~63!
as expected from the properties of the harmonic functi
The terms in proportion to 1/r andr 2 in C disappear in Eq.
~63! as in conventional cases. Thus, the pressure is de
mined by the Stokes pole ofC, which is proportional tor as
Cst5dr sin2 u and to 1/r in F asFst5(d/r )sin2 u. From the
relationD2Cst1m rFst52@d(22m r)/r #sin2 u and Eq.~63!,
we obtain

p5
d~22m r !

r 2
cosu1p0 , ~64!

wherep0 is an unimportant constant.
The flow is similar to conventional Stokes flow, which

symmetrical about a plane normal to the external flow~Fig.
1!. The most significant difference between the conventio
Stokes flow and micropolar Stokes flow appears as a lo
ized microrotation near the sphere~Fig. 2!. The micropolar
flow far from the spherer @j is not different from conven-
tional flow.

B. Drag force exerted on a sphere

Let us calculate the force exerted on a sphere in a
cropolar fluid flow. For this purpose we explicitly write th
stress tensorTi j as

Ti j 52pd i j 1S 12
m r

2 D S ]v j

]xi
1

]v i

]xj
D

1
m r

2 S ]v j

]xi
2

]v i

]xj
D2m remi jvm , ~65!

whereemi j is the alternative tensor of Levi-Civita`. Now we
decouple the stress tensor into two parts as

Ti j 5s i j 1t i j ; t i j 5m remi j~Vm2vm!, ~66!
al

.

r-

al
l-

i-

where Vm5(rotv)m/2, t i j is the asymmetric part of the
stress tensor, ands i j is the symmetric part.

Let us consider the contribution fromt i j to the drag force.
From considerations of symmetry, the drag force from t
part is

Ft5E
S
t rxur 51dS5m rE

S
S 2

y

r
Vz1

z

r
VyDdS, ~67!

where dS represents the integration on the surface of
sphere. To derive the last expression in Eq.~67! we use Eq.

FIG. 1. The stream line of three-dimensional micropolar Sto
flow. The black circle represents the sphere. The flow direction
horizontal.

FIG. 2. Contour plot of the microrotation field. The situation
the same as that in Fig. 1. We have not plotted the sphere expli
in this figure.
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~66! and v50 on the surface of the sphere. Fromx/r
5cosu, y/r 5sinu cosw andz/r 5sinu sinw, Eq. ~67! is re-
duced to

Ft52E
0

2p

dw coswE
0

p

duVw~1,u!sinu50. ~68!

Other contributions for the drag force correspond to those
the conventional Stokes problem. The contribution from
velocity field is given by

Fv52S 12
m r

2 D E
S
dSsinu

]vu

]r
~1,u!

5
2p~22m r !

2~11j!

2~11j!2m rj
, ~69!

where we use Eq.~61! and *0
pdu sin3 u54/3. On the other

hand, the contribution from the pressure term is

Fp52E
S
dS pcosu5

2p~22m r !~11j!

2~11j!2m rj
, ~70!

where we use*0
pdu cos2u sinu52/3 and Eqs.~64! and~60!.

The total contributionFv1Fp1Ft is given by

Ftot5
2p~11j!~22m r !~32m r !

2~11j!2m rj
. ~71!

Note that we have assumedm,2. The result can be con
verted into physical units. The drag force on the sphere~ra-
diusa) exerted by a micropolar fluid whose viscosities areh
andh r is given by

Ftot5
2p~h1h r !aU~11j!~22m r !~32m r !

2~11j!2m rj
, ~72!

which is reduced to 6phaU as m r52h r /(h1h r)→0 and
j→0.

C. Beyond the Stokes approximation

In this subsection we briefly present the procedure to
culate the flow and the drag beyond the Stokes approxi
tion. As mentioned in the Introduction, it is not possible
obtain an explicit representation of the flow field based
the Oseen approximation. Thus, it is natural to adopt
series expansion of the Reynolds numberR. For this purpose
we rewrite the full equations~11! and ~12! for C andF as

R

r 2 sinu
S ]C

]u

]

]r
2

]C

]r

]

]u
12 cotu

]C

]r
2

2

r

]C

]u DD2C

5D4C1m rD
2F, ~73!

and

RI

m r r
2 sinu

F1

r

]C

]u S 12r
]

]r D1
]C

]r S ]

]u
2cotu D GF

5D2C12F2mBD2F. ~74!
in
e

l-
a-

n
e

The solution can be obtained from

C5C01RC11•••, F5F01RF11•••, ~75!

whereC0 andF0 are the solutions in Stokes approximatio
in Eqs.~57! and~58!. To obtain the explicit forms ofC1 and
F1 we need a long and tedious calculation. Thus, we do
give the explicit expressions.

However, we note that in the first order approximation t
velocity does not behave properly at infinity. The nonexi
ence of a second approximation to the Stokes solution
conventional flow is known as Whitehead’s paradox@25#. To
remove this difficulty, we use the matched asympto
method as introduced in Sec. II. That is, we use the ou
solution determined from Eq.~24! far from the sphere, while
we use the simple perturbative result as the inner solut
An unknown constant arising from the lack of a bounda
condition far from the sphere is determined by matching
inner solution and the outer solution. Because Eq.~24! is
solvable, it is straightforward to obtain the flow fields
series expansions ofR. The explicit calculation will be dis-
cussed elsewhere.

V. FLOW PAST A CYLINDER

As is well known, for conventional viscous flow in 2D
the solution based on the Stokes approximation does not
isfy the boundary condition far from the cylinder. This
known as Stokes’ paradox and is more serious than Wh
head’s paradox in 3D. Thus, we need to adopt the matc
asymptotic method from the lowest order expansion ofR.

In two-dimensional systems, the stream function is d
fined through

v r5
1

r

]C

]u
; vu52

]C

]r
. ~76!

These choices automatically ensure Eq.~10!. In 2D, the field
variables are written asv5(v r ,vu) and v5vzẑ where ẑ is
the unit vector vertical to the flow plane.

The procedure is as follows. In the next subsection
will give the explicit calculation of the Stokes approximatio
as an inner solution. In Sec. V B, we will obtain an out
solution and use the matched asymptotic method. In S
V C, we will calculate the force exerted by the fluid flow.

A. Stokes approximation as an inner solution

At the first step, let us obtain the solution of Eqs.~25! and
~26! based on the Stokes approximation. From Eqs.~76! and
~33! we obtain an equation forvz andC:

D2C1m rDvz50. ~77!

On the other hand, from Eq.~26! we obtain

DC12vz2mBDvz50. ~78!

From the operation of the Laplacian on Eq.~78! with the
help of Eq.~77! we obtain

D~D2j22!vz50, ~79!
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where j is given in Eq.~37!. The problem will be solved
under the boundary condition on the cylinder. Although
cannot adopt the boundary condition far from the cylind
we know that the leading singularity comes from a logari
mic divergent term which will be regularized by matchin
with the outer solution. Thus, higher divergent terms wh
obey power laws will be omitted in discussion in this su
section. The boundary condition far from the cylinder is

vz52 1
2 DC, ~80!

which is equivalent tovz5rotv/2.
Taking into account the boundary condition on the cyl

der

C~1,u!5
]C

]r
~1,u!5vz~1,u!50, ~81!

we obtain

Dvz~r ,u!5 (
n51

`

Cn
(2)KnS r

j D sinnu, ~82!

whereCn
(2) is a constant. Thus, it is easy to obtain the gene

form of vz as

vz~r ,u!5 (
n51

` Fav,nr n1bv,nr 2n1Cn
(2)j2KnS r

j D Gsinnu.

~83!

It is obvious thatav,n50 for all n to satisfy the boundary
condition far from the cylinder. From the last equation
~81! we obtain

bv,n52Cn
(2)Kn~j21!j2. ~84!

Similarly, we can obtainC as

C~r ,u!5sinuFaC
(2)r 1

bC
(2)

r
1ar ln r 2m rj

4C1
(2)K1S r

j D G
1 (

n52

`

sinnuFbC,n
(2)

r n
1dC,n

(2) r 22n

2m rCn
(2)j4KnS r

j D G . ~85!

As in the case of the flow past a sphere, it is easy to sh
that the moden>2 will become zero. Thus, the problem ca
be simplified. From Eq.~80! and the first two relations of Eq
~81! we obtain

bv52a, aC
(2)5aâ, bC

(2)5ab̂, C1
(2)5

a

j2K1~j21!
,

~86!

where

â5
1

2 Fm rjS j1
K18~j21!

K1~j21!
D 21G ; ~87!
,
-

-

-

l

f

w

b̂5
1

2 Fm rjS j2
K18~j21!

K1~j21!
D 11G .

Thus, we obtain

C~r ,u!5a sinuS âr 1
b̂

r
1r ln r 2m rj

2
K1~r /j!

K1~j21!
D ,

v~r ,u!5a sinuS 2
1

r
1j2

K1~r /j!

K1~j21!
D . ~88!

LIke the usual Stokes problem in 2D, the flow field produc
from Eq. ~88! has a logarithmic singularity in the limit ofr
→`.

B. The outer solution and matched asymptotic method

To resolve Stokes’ paradox forr→`, we adopt the
matched asymptotic method developed by Kaplun and
gerstrom@23#. We reconsider Eq.~88!,

C~r ,u!;a~R!S âr 1
b̂

r
1r ln r 2m rj

2
K1~r /j!

K1~j21!
D sinu,

~89!

wherea is replaced by a multipliera(R) which is allowed to
depend upon the Reynolds number, because our asymp
sequence is unspecified. Although this approximation can
satisfy the conditionv5ex in Eq. ~40! or C→r sinu for r
→`, it can be matched to the uniform stream, regarded
the first term of an Oseen expansion.

Now, introducing a new variable

r5
R

12m r /2
r 5er ; e5

R

12m r /2
, ~90!

the outer equation~24! is

]u

] x̂
52“̂ p̃1D̂u, ~91!

where“̂5(12m r /2)21
“̃. Then the Oseen expansion begi

with

C;
1

e
r sinu1••• as e→0. ~92!

Writing the Stokes expression~89! with the Oseen variable
~90!, the leading term is now

C;
a~e!

e
ln~1/e!r sinu, ~93!

wherea(e)5a(R) in the limit of e→0. This matches Eq
~92! if a(e)5@ ln(1/e)1k#21 where k is a constant to be
determined later.

Expansion of the Stokes approximation~89! further byr
anda(e) leads to
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C;
1

e
@11a~e!~ ln r2k1â!#r sinu. ~94!

This requires the Oseen expansion~92! to continue as

C;
1

e
@r sinu1a~e!c~r,u!1•••#. ~95!

Substituting this into the full equation,c satisfies the linear-
ized Oseen equation

S D̂2
]

] x̂
D D̂c50. ~96!

The appropriate solution for the stream function can
found as an infinite series@63#.

The fundamental solution due to Oseen gives as the C
tesian velocity components

ux5
]c

]~r sinu!

52c2S ]

]~r cosu!
@ ln r1e(r cosu)/2K0~r/2!#

2e(r cosu)/2K0~r/2! D ,

uy52
]c

]~r cosu!

52c2

]

]~r sinu!
@ ln r1e(r cosu)/2K0~r/2!#, ~97!

where c2 is a constant which will be determined by th
matching. The term in lnr at the origin cancels the term
involving K0(r/2). For small r we obtain the integrated
form of c as

c;2c2S ln
4

r
112g D r sinu1O~r2 ln r!, ~98!

whereg is Euler’s constantg50.5772 . . . . Using this we
find that the Oseen expansion~95! behaves near the cylinde
as

C;
1

e
r sinuF11c2a~e!S ln

r

4
1g21D G . ~99!

This can match Eq.~94! if we choose

c251; k5â2g111 ln 4. ~100!

Thus, we obtain

a~e!5S ln
4

e
2g111âD 21

. ~101!

This vanishes fore→0. The explicit expression near the cy
inder is thus given by
e

r-

C~r ,u!.a~e!S âr 1
b̂

r
1r ln r 2m rj

2
K1~r /j!

K1~j21!
D sinu.

~102!

This expression satisfies all the boundary conditions.
The explicit expression of the inner solution is thus giv

by

v r5a~e!S â1
b̂

r 2
1 ln r 2m rj

2
K1~r /j!

rK 1~j21!
D cosu,

vu5a~e!S 2â1
b̂

r 2
2 ln r 211m rj

K18~r /j!

K1~j21!
D sinu.

~103!

The pressure is similarly determined from Eqs.~25! and~76!
as

]p

]r
5

1

r

]

]u
~DC1m rvz!,

1

r

]p

]u
52

]

]r
~DC1m rvz!.

~104!

As in the case of 3D, the pressure is determined by
Stokes poleC;r ln r. The result is

p5p02
22m r

r
a~e!cosu, ~105!

wherep0 is an unimportant constant. Thus, explicit represe
tations for the inner solution, which can be connected w
the outer solution, are obtained.

C. Drag force exerted on a cylinder

As in the previous section, let us calculate the drag fo
exerted on a cylinder by a moving fluid. The drag force
again calculated from three contributions. The force com
from the asymmetric tensor is not zero in 2D. From Eq.~67!,
the result is

Ft52m rE
0

2py

r
V~1,u!ur 51du52m rE

0

2p

V~1,u!sinudu,

~106!

whereV5(rot v)z/2 and it is reduced toV(1,u)5 1
2 ]vu /]r .

From Eq.~87! and ~103! we obtain

Ft5pm ra~e!@12m rb~e!# ~107!

where we use*0
2psin2u5p and

b~j!5
1

2K1~j21!
@K19~j21!2jK18~j21!1j2K1~j21!#.

~108!

The force coming from the normal stress is given by

Fp52E
0

2p

p cosudu5p~22m r !a~e! ~109!

and the force from the shear stress is
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F f52S 12
m r

2 D E
0

2p

du sinu
]vu

]r U
r 51

5p~22m r !a~e!@12m rb~j!#. ~110!

Thus, the total force is given by

Ftot5pa~e!@42m r22m rb~j!#, ~111!

which can be rewritten as

Ftot5p~h1h r !Ua~e!@42m r22m rb~j!# ~112!

in physical units. This is reduced to the result obtained fr
the Oseen approximation@64# as Ftot→4phU/(S11/2) in
the limit of m r→0 whereS5 ln(4/R)2g.

VI. STEADY FLOW INSIDE A CONTAINER

In this section we discuss steady circulation flows insid
container. Since the flow is confined in a finite region, t
Stokes approximation may give an appropriate solution
the slow viscous flow. Thus, the basic equations in this s
tion are Eqs.~25! and ~26!.

As mentioned in Sec. III, we do not impose the bound
condition v50 but the slip boundary condition~15! on the
surface of the container, because otherwise the problem
comes overcomplete. This may be understood from the a
ogy of granular flows as follows. The rotation of particl
without the slip boundary produces a fast flow near
boundary. The width of the boundary layer is as thin as
particle radius. If we are able to normalize the flow by t
fastest flow rate near the boundary, we may be able to s
the problem under the conditionv50 on the wall. It is dif-
ficult, however, to determine the position where the flow r
is maximum theoretically, and the width of the bounda
layer becomes zero as the radius of the particles beco
zero. Thus, we adopt the slip boundary condition in this s
tion.

We note that the actual situation needs an external fo
to maintain the flow. If we regard this flow as an appro
mate one for vibrating beds, there is external vibration a
stationary gravity. If we assume that the time dependenc
the pressure, the velocity, and the microrotation are re
sented by a common functionJ(t), e.g.,J(t)512Gcost,
Eq. ~25! is now replaced by

J~ t !@2“~2z1p!2ez1Dv1m r rot~ve'!#50,
~113!

where the gravity2ez and the stationary pressure2z cancel
each other. Since the time dependence and the effect of g
ity in such a linear system can be absorbed inJ(t), we can
discuss the flow inside the container as a stationary prob

A. Flow inside a cylinder

Let us demonstrate the existence of an interesting ci
lation flow inside the cylinder. The surface of a micropo
fluid exists atz50 andz increases as depth from the surfa
increases. Let us consider the flowv5(v r ,vu ,vz)
a

r
c-

y

e-
al-

e
e

ve

e

es
-

e

d
of
e-

v-

m.

u-
r

5„v r(r ,z),0,vz(r ,z)…. In this case the flow can be repre
sented by a vector potential or a stream functionv
5rot@C(r ,z)eu# or

v r52
]C

]z
; vz5

1

r

]

]r
~rC!. ~114!

Since the microrotation field is represented byv5vueu , the
basic equations~25! and ~26! can be rewritten as

D 4C1m rD 2vu50 ~115!

and

D 2~D 22j22!vu50, ~116!

whereD 2 is defined by

D 25
]2

]r 2
1

1

r

]

]r
2

1

r 2
1

]2

]z2
. ~117!

The boundary condition~15! and the conservation law~16!
are reduced to

C~1,z!5vu~1,z!50,
]C

]z
5D 2C5vu50 at r 50.

~118!

Unfortunately, the conditions at the center of cylinder will b
identities, which will not be useful to determine unknow
constants.

AssumingD 2vu5Ru(r )Z(z), Eq. ~116! is reduced to

1

Ru
S d2

dr2
1

1

r

d

dr
2

1

r 2D Ru52
1

Z

d2Z

dz2
52l, ~119!

where l is a separation constant. In the standard sensel
should be negative, because a flow exists along the str
line (C is a constant!. In this case the flow becomes a ci
cular flow or a convection. Forl,0, Z is expected to bel
5ln5(n/H)2 with a positive integern, and

Zn~z!5sin~nz/H !, ~120!

whereH is the height of the cylinder. The equation forRu is
now solvable asRu;I 1@r /(H/n)2# whereI 1(z) is the modi-
fied Bessel function. Thus we obtain

D 2vu5 (
n51

`

cu,nI 1S r

~H/n!2D sinS nz

H D , ~121!

wherecu,n is a constant. For later use, we discuss only
moden51 because of its fundamental role. From Eq.~121!
we obtain

vu5C0@C1I 1~r /H !1j2I 1~r /z0!#sinS z

H D ~122!

where C0 and C1 are constants, andz05j/A11(j/H)2.
From Eq.~115! we obtain
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C5C0j4m r S I 1~1/z0!

I 1~1/H !
I 1~r /H !2I 1~r /z0! D sinS z

H D
~123!

where we use the boundary condition~118!. Note that we
omit a formal special solution of Eq.~115! coming from the
first term of Eq.~122!, because it becomes singular at t
center of the container.

From Eq.~114! the circular flow arising from Eq.~123! is
given by

v r52
1

H
C0j4m r S I 1~1/z0!

I 1~1/H !
I 1~r /H !2I 1~r /z0! D cosS z

H D ,

~124!

and

vz5C0j4m r S 1

H

I 1~1/z0!

I 1~1/H !
I 0~r /H !2

1

z0
I 0~r /z0! D sinS z

H D ,

~125!

where we use (1/z)(d/dz)@zI1(z)#5I 0(z). Equation~125! is
reduced to

vz.C0j4m r@2I 1~1/j!2j21I 0~r /j!#sinS z

H D ~126!

for H@1 @i.e., z0→j and I 1(1/H);1/(2H)#. Although Eq.
~126! contains a similarr dependence to that observed
experiments on granular particles in vibrating beds@17#, the
z dependence of the functional form is different.

Let us examine the case ofl.0. This corresponds to th
situation in which the flow is localized near the surface. B
parallel procedure to that of Sec. V, we obtain

D 2vu5c0I 1~r /z!exp~2Alz!, ~127!

where I 1(x) is the modified Bessel function,l is an unde-
termined separation constant in Eq.~119! assumed to bel
,1/j2, andz5j/A12lj2. Thus, we obtain

vu5c0@c1J1~Alr !1j2I 1~r /z!#exp~2Alz!, ~128!

whereJ1(z) is the Bessel function andc0 and c1 are con-
stants that are determined by the boundary condition forvu .
From Eqs.~115! and ~118! we obtain

C~r ,z!5c0j4m rS I 1~1/z!

J1~Al!
J1~Alr !2I 1~r /z!D exp~2Alz!.

~129!

This solution may not be a solution for a smooth flow, b
cause the flow along the stream line (C5const) cannot cir-
culate as a convection flow. Since the flow in vibrating be
is not smooth, we may examine this solution as a ste
solution for granular flows.

The solution of the flow field described by Eq.~129! is
given by

v r5c0j4m rAlS I 1~1/z!

J1~Al!
J1~Alr !2I 1~r /z!D exp~2Alz!

~130!
a

-

s
y

and

vz5c0j4m rS Al
I 1~1/z!

J1~Al!
J0~Alr !2

1

z
I 0~r /z!D exp~2Alz!.

~131!

The result~131! is reduced to

vz.c0j4m r S 2I 1~1/j!2
1

j
I 0~r /j! Dexp~2Alz! ~132!

in the limit of l→0, which is identical to that reported in
experiments on vibrating beds@17#. In fact, vz in Eq. ~11b!
of @17# is given by

vz5
l

t S 11
1

f I~1/j!
@12I 0~r /j!# De2z/ l , ~133!

wherel andt are respectively the characteristic length sc
and the time scale, andf I(x)52I 1(x)/x21 from the conser-
vation law ~16!. Equation~133! can be rewritten as

vz}@2jI 1~1/j!2I 0~r /j!#e2Alz ~134!

identifying l 51/Al. Thus, Eq. ~134! is identical to Eq.
~132!. On the other hand, Eq.~130! cannot describe convec
tion flows, becausev r in circulation flows must have turning
point~s! to change the direction of flow. However, we expe
that the flow is similar to that observed in experiments.

B. Flow inside a rectangular container

For the 2D case it is easy to derive Eq.~11b! of Ref. @17#
by a parallel discussion to that presented here. Introduci

vx5
]C

]z
, vz52

]C

]x
~135!

we obtain Eqs.~77!–~79!. From a similar discussion to tha
in the 3D case we immediately obtain

vz~x,y!5@a2D1b2D sinh~x/ l !#exp~2Al2Dz!, ~136!

where a2D and b2D are constants determined from th
boundary conditions,l 5j/A12l2Dj2, andl2D is the sepa-
ration constant. Thus, it is straightforward to obtain

C~x,z!52@c2D1ã2Dx1b̃2D sinh~x/ l !#exp~2Al2Dz!,
~137!

wherec2D , ã2D and b̃2D are constants. The velocity field i
obtained as

vz5S ã2D1
b̃2D

l
cosh~x/ l ! D exp~2Al2Dz! ~138!

and

vx5Al2D@ ã2Dx1b̃2D sinh~x/ l !#exp~2Al2Dz!.
~139!

Note thatc2D50 in Eq. ~137! because of the symmetry o
the flow (vx50) at the center of the containerx50. The
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result of Eq.~138! is identical to the corresponding equatio
by Knight et al. @17#. We also indicate that both Eqs.~138!
and ~139! recover the result of the DEM simulation, thoug
the change of sign ofvx as a function ofz is not obtained in
the above expression@18#.

The calculation in this section is not matured when
compare it with those in the previous sections. However,
result is suggestive, and is comparable with experime
observation of vibrating beds of granular flow. Therefore,
can expect the existence of close relationships between
cropolar fluids and granular flows. Of course, this agreem
may be accidental. In fact, similar results can be reprodu
by different models such as the hopping diffusion mo
@65#. From the critical point of view, we may deduce that t
micropolar fluid model is not appropriate for granular flow
because the separation constant cannot be determined w
this framework. We will need more systematic investig
tions.

VII. DISCUSSION AND CONCLUSION

In this paper, we illustrate systematic calculations of
viscous micropolar flows around a cylinder and a sphere,
a preliminary calculation of the steady flows inside a co
tainer. If the micropolar fluid is an important concept, t
first two calculations will play fundamental roles. On th
other hand, the last calculation demonstrates that the solu
for the micropolar fluid is identical to that observed in gran
lar flows, though the agreement may be superficial. Althou
the result itself is only valid for Newtonian micropolar fluid
the agreement of our result with the experiment and sim
tions of granular flows is attractive for the application
micropolar models to granular flows.

As indicated in Sec. II, micropolar fluid mechanics cann
be a microscopic model but must be a phenomenology. T
it is natural to be skeptical of our approach to seek an ap
priate effective fluid theory of granular flows. To answer th
objection in part, we have demonstrated some points of
evancy of the calculation based on the Newtonian microp
fluid model. We will compare its result with the result of
DEM simulation in detail elsewhere@18#. However, we note
that the comparison is relevant only in the region far fro
the onset of convection, because below the onset the gran
particles are not in a fluidlike but in a solidlike state. A
mentioned Sec. IV, we can predict not only the vertical v
locity profile but also the horizontal velocity profile. Afte
averaging a large number of cycles~e.g., 1000 in@18#!, we
can suppress most stagnant effects, such as avalanch
arches and the flow caused by fractures in granular b
Thus we can obtain a smooth velocity profile as a function
time. The result of our simulation in most time regions su
ports the relevancy of the micropolar calculation in Sec.
Unfortunately, there remains the effect of avalanches
e
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arches in the bottom part of containers. This part canno
described by our micropolar fluid calculation. We hope th
it is worthwhile to check the validity of micropolar fluid
mechanics in granular flows.

Coming back to the flow outside the cylinder/sphere,
will have to compare results reported here with simulatio
and experiments. In particular, almost all experiments a
simulations have focused on stick-slip motion under sl
shear forces@66–69#, and need a solidlike state to describ
stationary states under the acting shear force. The exist
of a stick-slip region may lead to the suspicion that a sim
application of the micropolar fluid model to granular flo
cannot be used. Even when the boundary effects are cru
and the flow coexists with a solidlike state, we believe th
our calculation is meaningful, because such a situation
be described by a sort of dynamical fluid-solid transition, a
the flow part can be described by a relevant fluid model s
as the micropolar fluid model. In any case, our paper may
useful to introduce the unfamiliar concept of micropolar flu
mechanics to granular physicists, where in some case
validity has already been confirmed quantitatively.

As mentioned in the Introduction, our main concern is n
direct application of micropolar fluid mechanics to granu
flows, though we are afraid that we have stressed this po
bility too much. One of the most important characteristics
micropolar fluids is the existence of a relaxation term of t
microrotation to the rotation of flow in Eq.~12!. This is
common in fluid models describing fluidized beds and tra
flows @70–72#. Traffic flows and granular flows in a tube ar
known to have a beautiful mathematical structure@73–75#.
However, there are few theoretical arguments for two dim
sional flows. Micropolar fluid mechanics may give a unive
sal framework to discuss higher dimensional flows with m
crostructure.

In conclusion, we have investigated fundamental prop
ties of slow micropolar fluid flows. We have presented s
tematic calculation of flows around a sphere and a cylind
We obtained explicit forms of the velocity fields@Eqs. ~61!
and ~103!#, the microrotation fields@Eq. ~62!# and the drag
force exerted by the fluid flow@Eqs.~72! and~112!#. We also
gave the procedure to calculate contributions from singu
perturbations of the Reynolds number. We found an inter
ing solution~132! for a steady flow inside a cylinder, whic
is identical to Eq.~133! observed in experiments on granul
vibrating beds.
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~Birkhäuser, Boston, 1999!.
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